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RESOLUTIONS OF SPACES ARE STRONG EXPANSIONS

Sibe Mardesié

Abstract. Strong expansions of spaces are morphisms of pro-Top from spaces to inverse
systems, which satisfy a stronger version of the homotopy conditions of K. Morita. In the present
paper it is proved that resolutions of spaces are always strong expansions. This strengthens the
known result that resolutions are always expansions.

1. Introduction

Let X = (X»x,par,A) be an inverse system of spaces over a directed set A
and let p : X — X be a morphism of pro-Top, i.e., p is a collection of mappings
pa: X — Xy, A € A, such that paxpar = pa, for A < X', p is called an expansion
of X if the following conditions of K. Morita are satisfied {7}:

(M1) If P is an ANR (for metric spaces) and f : X — P is a mapping, then
there exist a XA € A and a mapping h : X — P such that

(1 hpx = f.
(M2) If A € A, P is an ANR and fy, fi : X» — P are mappings such that
(2) fopx = fipa,
then there exists a A’ > A such that
(3) Jopar: = fipax.

The following notion of strong expansion was defined in [2] and [5].

Definition 1. A morphism p : X — X of pro-Top is a strong eicpansion
provided it satisfies condition (M1) and the following condition:

(SM2) Let P be an ANR, A € A, let fo, f : X» — P be maps and let
F : X x I — P be a homotopy such that
(4) F(z,0) = fopa(z), z € X,
(5) F(z,1) = fipa(z), reX.
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Then there exist a ' > A and a homotopy H : X)» x I — P, such that

(6) H(z,0) = fopax(z),  z€ Xu,
(7 H(z,1) = fipanr(2), z € X,
(8) H(pa x 1) ~ F(rel(X x 0I)).

Remark 1. (SM2) differs from (M2) only in the additional requirement (8).
Therefore, every strong expansion is an expansion.

Recall that a resolution [4] (also see [6]) is a morphism p : X — X of pro-Top,
where the following two conditions are satisfied.

(R1) If P € ANR, V is an open covering of P and f : X — P is a mapping,
then there exist a A € A and a mapping h : XA — P such that f and hpy are
V-near mappings, denoted by ‘

(9) (hoa, f) S V.

(R2) For P € ANR and V an open covering of P, there exists an open covering
V' of P such that, whenever A € A and fo, fi : X» — P are mappings such that

(10) (fopr, fipr) <V,
then there is a A’ > A such that
(11) (fopaxr, fipan) < V.

The main result of this paper is the folloowing theorem.

THEOREM 1. Every resolution p: X — X of a space X is a strong ezpansion
of X.

CORROLARY 1. Every resolution is an expansion.

This known fact (see [6, I, 6.1, Theorem 2]) follows from Theorem 1, by
Remark 1. Another consequence of Theorem 1 is the following corollary.

COROLLARY 2. Every space X admits a cofinile strong ANR-ezpansion, i.e.
a strong ezpansion p: X — X = (X, paxr, A), where all the X ’s are ANR’s and
A is cofinite.

This is a consequence of [3, II, Theorem 1], where the analogous statement
for resolutions is proved.

2. Main lemma

LEMMA 1. Let p: X — X be a resolution and let A, P, fo, fi and F be as in
(SM2). Then for every open covering U of P, there exist a X > X and a homotopy
H: Xy xI— P such that

(1) H(y,0) = forax(y), y€ Xa,
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(2) H(y,1) = fi;an(y), vy € X,
(3 (F,H(1 x par)) SU.

The proof of this key lemma is deferred to Section 5.

LEMMA 2. Let P be an ANR and letU be an open covering of P. Then there
ezists an open covering V of P such that, whenever for a space Z 1wo mappings
ho,hy : Z — P are V-near, then there ezists a U-homotopy H : Z x I — P which
connects hg with hy. Moreover, if for a subset A C Z, holA = hi1|A, then one can
achieve that H is a homotopy rel A. ' '

This lemma is proved in [6, 1, 3.2, Theorem 6}.

Proof of Theorem 1. We will now derive Theorem 1 from Lemmas 1 and 2.

Proof of (M1). Take for U any open covering of P and choose V as in Lemma
2. By (R1), applied to V, there isa A € A and a mapping h : X, — P such that
(hpa, f) € V. Then, by the choice of V, hpx = f.

Proof of (SM2). Let A\, P, fo,fi : Xa = Pand F: X xI—> P be as in (SM2).
Take any open covering U of P and choose V according to Lemma 2. Now apply
Lemma 1 to the covering V. One obtains a A’ > A and a homotopy H : X xI — P,
which satisfies 1.(6), 1.(7) and

(4) (F,H(1xpx)) < V.
Put Z=XxI, A=X x 01, ho = F, hy = H(px x 1) and note that
(5) holA = hyA. |
This is so because, by (1.4) and (1.6), _
(6) ho(2,0) = F(z,0) = fopa(2) = fopaxpx(2)

= H(pa(2z),0) = hy(z,0), z e X.
Similarly, by (1.5) and (1.7),
(7) ho(:c, 1)= Flz, 1) = fipa(z) = flPAA’PA’(I)
=H(p,\:(:c),1)=h1(:c,0), zeX.

Also note that (ho,h;) < V, because of (4). Consequently, by the choice of ¥V
(Lemma 2), there exists a homotopy rel(X x 0I), which connects F and H (par x I).
This establishes (1.8).

3. A lemma on homotopy equalizers
The following lemma is needed in Section 5 in the proof of Lemma 1.

LEMMA 3. Let X be a space, let P, P' be ANR’s, let f : X — P’, go,g1:
P’ — P be maps and let F : X x I — P be a homotopy such that

(1) F(z,0) = gof(z), zeX,
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2) : | F(z,1) = g1 f(z), z e X.

Then there exist an ANR P", maps f' : X — P”, g : P — P’ and a homotopy
G:P"xI— P such that

(3) gf' =1,

(4) G(2,0) = gog(z), z€P",
(5) G(z,1) = q19(2), z € P",
(6) G(f x1)=F.

This lemma strengthens [6, I, 4.1, Lemma 1] by the additional requirement
(6). In the proof we use ideas from the proof given in [6] together with some
improvements taken from the proof of an analogous result in [1, Lemma 5].

Proof of Lemma 3. Let P be the space of paths in P (compact-open topo-
logy). Define mappings h: X — P and f': X — P’ x P! by

(7 (h(2))(®) = F(=,1), zeX, tel,
(8) fl(z) = (f(z), h(z)), =z€X.

Let g : P’ x P — P’ denote the first projection, i.e.
(9) svw)=y, yeP,wePl

Then f, f’ and g satisfy (3).
Now define P C P’ x P! by
(10) P" = {(y,w) € P' x PT:w(0) = go(y),w(1) = m(v)}-
Furthermore, let G : P x I — P be given by
(11) G((y,w),t) =w(t), (yw)eP’ tel
Note that G satisfies (4) and (5). Moreover, by (8), (11) and (7),
(12) G(f' x 1)(z,1) = G((f(2), M(z)), 1) ,
= (h(z))(t) = F(z,1), ze X, tel,
which shows that (6) is also satisfied.

In order to complete the proof we will show that P” is an ANR.

Let Z be a metric space, A C Z a closed subset and ¢ : A — P C P’ x Pla
mapping. We must find a neighborhood V of A in Z and an extension ¢ : V — P"
of .

Consider ¢y : A — P!, where ¢: P'x PT - P! denotes the second projection.

Let & : A x I — P be given by '

(13) ®(a,t) = (gp(a))(t), ac A, tel
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Since p(a) € P” and g: P’ x P! — P’ is the first projection, (10) implies
P

(14) (g9(a))(0) = gogp(a), a€A4,
(15) (gp(a))(1) = g19¢(a), a€A.
Formulae (13)-(15) show that

(16) ®(a,0) = gogy(a), a€ A,
(17 ®(a, 1) = gogy(a), a€A.

Since P’ is an ANR, gy : A — P’ admits an extension ¢ : U — P/ to a
neighborhood U of A in Z ‘

(18) Y|A = gp.

Clearly go¥, 914 : U — P are extensions of gogy and ¢, gy respectively. Since
also P is an ANR, there exist a neigborhood V of Ain Z, V C U, and an extension
®:V xI— Pof ®, which connects got|V with g, 9|V (see [6, I, 3.2, Theorem 8]),
ie.,

(19) 5(2,0) = go¥(z), zeV,
(20) <i>(z, 1) = g19(2), z€eV,
(21) &(a,t) = ®(a,t), a€A, tel

We now define mapings x : V — P/ and : V — P’ x P! by

(22) (x(2)(t) = ¥(z,1), z€V, tel,
(23) p(2) = (¥(2),x(2)), z€V.

Note that (21) and (13) imply
(24) x|A = qp.

Since g and g are the two projections of P’ x P/, it follows from (18) and (23)
that ¢ extends .

To complete the proof it suffices to note that @(z) € P”, for z € V. Indeed,
(22), (19) and (20) yield

(25) x(2))0) = g0¥(2),
(26) ()L = g19(2).

4. A lemma on stacked coverings

Let W be an open covering of a space Z and, for each W € W, let Jw be
an open covering of the unit interval I. Then the sets W x J, where W € W and
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J € Jw, form an open covering S of Z x I. We call such a covering S a stacked
covering.

LEMMA 4. Let Z be a normal space and let S be a stacked covering of Z x I,
where W is locally finite and each Jw, W € W, is finite. Moreover, for each
W € W, let aw be a real number, aw > 0. Then there exists a continuous
function ¢ : Z — I with the property that every z € Z admits a W € W such that
6 €W, |
(2) 0<p(z) <aw.

Proof. Let (¢w,W € W) be a partition of unity on Z subordinated to W,
ie,pw : Z — I, W € W, are continuous functions such that

(3) ew(2) #0 = ze W,
4) > ew(z)=1.
w
Put
(5) ¢ = sup{awpw : W € W}.

By local finiteness of W, every point zop € P admits a neighborhood U such that
ew |U = 0, except for a finite collection of indexes {W1,...,W,}. Then

(6) ¢lU = {aw,ow.IU, ..., ew,ow. U},
which implies continuity of ¢ at zp.
For a given z € Z one cannot have pw(z) = 0, for all /7 € W, because of

(4). Therefore, p(z) > 0, for every z € Z. By (5), every z € Z admits a W € W
such that

(7) p(z) = awow(2) < aw.
Since ¢(z) > 0, also @w (z) > 0, and therefore, (3) implies that z € W.

5. Proof of Lemma 1

Let p : X — X be a resolution and let \, P, fo, fi and F be as in (SM2), i.e.,
satisfy (1.4) and (1.5). Moreoover, let I be an open covering of P.

We first choose an open star-refinement 2/’ of 2/. Then we choose an open
covering V of P such that the assertions of Lemma 2 hold for &4’ and V. We
also assume that V is a star-refinement of &’. Next, we choose V' so that V' is a
star-refinement of V and (R2) holds for P, V and V'.

Put P’ = P x P and denote by go,91 : P’ — P the two projections. Then
define f : X — P’ as the only map for which '

(1) gof = fora, o1f = fipa.
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By (1.4) and (1.5), we have _
) Fo=gf, Fi=af

We now apply Lemma 3 to X, P, P/, f, 90,91 and F and conclude that there
exist an ANR P”, maps f' : X — P", g : P” — P'and a homotopy G : P""xI — P
such that ‘

(3) gf’ ‘:f’
(4) Go = 909, G1 =gy,
(5) . G(ffx1)=F.

We now consider the open covering G™(V’) of P” x I and choose a refinement,
which is a stacked covering S of P x I, given by a locally finite open covering W
of P"” and by finite open coverings Jw, W € W, of I.

Applying (R1) to f' : X — P” and W, choose a A > A and a mapping
h : Xy# — P’ such that

(6) (f'shpan) < W.

Note that for any W € W, W x 0 C W x J, for some J € Jw and W x J is
contained in G~}(V’) for some V' € V'. Hence, by (4),

g0g(W) = Go(W) = G(W x 0) C G(W x J) C V',
i.e. gog(W) refines V'. Consequently, (6) implies
(M) (9091, goghpar) < V'.

Now note that (3) and (1) yield

(8) 909f = gof = fopr = foparnpar,
so that (7) becomes ‘

9) (goghpan, foparnpan) < V.
Analogously we obtain

(10) (919hpan, fipaanpan) < V.

By the choice of V' (see (R2)), there is a A’ > A" such that
(11) (goghpanar, fopant) <V,

(12) (919hpanns, frpan) S V.

By the choice of V, we conclude that there exist &’-homotopies K, L : Xp»r xI — P
such that

(13) I\’o = fopAAl, K1 = goghpxn,\l,
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(14) ' Lo = fipaxr, Ly = gighpauyr.

Furthermore, by (6), for any t € I, both points (f/(z),t) and (hpa«(z),t) belong to
sorne member of § and therefore also to G~!(V’) for some V' € V'. Consequently,
G(f' x 1) and G(hpx» x 1) are V'-near and a fortiori V-near.

(15) (G(' x 1), G(hpan x 1)) < V.

We will now use the homotopies K, L and G(hp,\u,\/ x 1) to construct the
desired homotopy H : Xy x I — P.

For every W € W choose a number aw, 0 < aw < 1/3, which is smaller than
the Lebesgue number of the covering Jw . Note that if ¢,t' € I, |t —¢/| < aw, then
there is a J € Jw, such that ¢,t’ € J. Consequently, if z € W and |t - /| < aw,
then (z,t),(z,t') € W x J € 8, for some J € Jw, and therefore, both G(z,t) and
G(z,t') belong to some V' € V'.

We now apply Lemma 4 and obtain a continuous function ¢ : P” — I such
that, for every z € P there isa W € W with

(16) ze W,

(17 0<p(z) <aw L 1/3.

Note that 0 < ¢(2) < 1 — ¢(z) < 1, for every z € P".
We define H(y,t), y € X/, by

(. t
K (y) '(‘o(_zj'): 0 S t S SO(Z),
(18) ) =4 6(5 172, o) sts1-9l0)
1-1¢
\L(y,EC;S-)’ I—W(Z)Stﬁl,
where
(19) z = hpanxi(y).

H : Xy x I — P is well-defined, because of (4), (13) and (14). Moreover, (13) and
(14) show that H satisfies (2.1) and (2.2). It remains to prove (2.3), i.e., to show
that, for every (z,t) € X x I, there exists a U € U such that

(20) F(z,t),H(px(2),t) € U.

Put y = pa(2) and z = hpawa(y) = hpan(z). We will first consider the case
when ¢(z) <t < 1— ¢(z). Then, by (18) and (5),

(21) H(pa(2),) = H(y, 1) = G<z’ 1t:2‘p<p((zz))>’
(22) F(=,1) = G(f'(x),1). |
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By (6), there is a W € W such that
(23) [(z),zeW.

Moreover, by (16) and (17), there is a W’ € W such that z € W’ and 0 < ¢(2) <
< aw:. Also note that p(z) <t <1 - ¢(z) implies |1 — 2t] < 1 — 2¢(z), so that

1-2¢
@9 ’1 56| <
and therefore
_t—9(2)
(25) - S22 < o) <o

By the choice of the numbers aw, this and z € W’ imply the existence of some
V{ € V' for which

t—p(2) '
(26) G(z,t),G(z, 1= 2(9(3)) e V.
On the other hand, by (23), (f'(z),t) and (z,1) both belong to some member
of § and, therefore, there is a V4 € V' such that

27 | G(f'(2),1),G(z,t) € V3.

Since V' is a star-refinement of V, (22), (21), (26) and (27) show that there is a
V € V, which contains the points F(z,t), H{pa(z),t). Since V refines U, this
establishes (20) in the case p(2) <t <1 - ¢(2).

We now consider the case when 0 < ¢ < ¢(z). Choose W € W so that (16) and
(17) hold. Then there is a J € Jw such that 0,¢ € J, because [t — 0| < ¢(2) < aw.
Consequently, there is a V'’ € V' such that

(28) G(z,t),G(z,0) € V.

On the other hand, by (6), there is a W’ € W which contains both points f'(z)
and z = hpy#(z). Therefore, for any ¢t € I, (f'(z),t) and (z,t) belong to W’ x Jq,
for some J; € Jw:. Consequently, there is a V] € V' such that

(29) G(f'(z),1),G(z,t) € V.
In particular, for ¢t = 0 we have VJ € V' and
(30) G(f'(=),0),G(z,0) € V5.

Since V' is a star-refinement of V, we conclude, by (22); (29), (30) and (28), that
there is a V € V such that

(31) F(z,t),F(z,0)€ V.
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Since K is a U’-homotopy, there is a U’ € U’, which contains both points K(y, 0)
and K(y,t/¢(2)). However, by (13), (1), (3), (4) and (5),

(32) K(y,0) = fopax(y) = fora(z) = 9o f(2)
' = gogf'(z) = G(f'(2),0) = F(z,0).

Furthermore, by (18),

(33) K(y,t/9(2)) = H(y,t) = H(pa(2),1).
We thus have
(34) - H(px(z),1), F(z,0) € U'.

Since V refines U’ and U’ is a star-refinement of U, (31) and (34) show that there
is a U € U such that (20) holds.

The last case, when 1 — ¢(z) <t < 1, is symmetric to the case 0 <t < ¢(z)
(use L instead of K). This completes the proof of Lemma 1 and Theorem 1.
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