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TURÁN-TYPE INEQUALITIES OF POLYNOMIALS

Robinson Soraisam, Barchand Chanam, and

Mahmood Bidkham

Abstract. If p(z) =
∑

n

ν=0
aνzν is a polynomial of degree n having all its

zeros in |z| 6 k, k > 1, V. K. Jain [Bull. Math. Soc. Sci. Math. Roum., Nouv.
Sér. 59 (2016), 339–347] proved

max
|z|=1

|p′(z)| >
n

(

|a0| + |an|kn+1
)

|ao| (1 + kn+1) + |an| (kn+1 + k2n)
max
|z|=1

|p(z)|.

We first obtain a generalization as well as improvement of the above inequality.
Further, we extend our first result to a more generalized result which yields
improved results of some known inequalities as particular case.

1. Introduction and preliminaries

Let p(z) be a polynomial of degree n, then Bernstein’s well-known inequality [1]
is max|z|=1 |p′(z)| 6 nmax|z|=1 |p(z)|. If we are interested to obtain a lower bound
estimate of max|z|=1 |p′(z)| in terms of max|z|=1 |p(z)|, such problems do not exist
in literature. However, if the polynomial p(z) has all its zeros in |z| 6 1, then Turán
[14] proved that

(1.1) max
|z|=1

|p′(z)| > n

2
max
|z|=1

|p(z)|.

Inequality (1.1) is sharp and equality holds for p(z) = αzn + β, where |α| = |β|.
Inequality (1.1) of Turán [14] has been of considerable interest and applications
and it would be of interest to seek its generalization for polynomials having all
their zeros in |z| 6 k, k > 0. The case when 0 < k 6 1 was settled by Malik [8] and
proved

max
|z|=1

|p′(z)| > n

1 + k
max
|z|=1

|p(z)|.

While for the case k > 1, Govil [4] proved

(1.2) max
|z|=1

|p′(z)| > n

1 + kn
max
|z|=1

|p(z)|.
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Equality in (1.2) holds for p(z) = zn + kn, k > 1. Under the same hypothesis, it
was Govil [5] who improved upon (1.2) by proving

(1.3) max
|z|=1

|p′(z)| > n

1 + kn

{

max
|z|=1

|p(z)| + min
|z|=k

|p(z)|
}

.

Equality in (1.3) holds for p(z) = zn + kn, k > 1. Recently, Jain [7] proved an
improvement of inequality (1.2), incorporating the leading coefficient and constant
term of the polynomial by using the generalized form of Schwarz’s classical lemma.

Theorem 1.1. If p(z) =
∑n

ν=0 aνz
ν is a polynomial of degree n having all its

zeros in |z| 6 k, k > 1, then

max
|z|=1

|p′(z)| > n(|a0| + |an|kn+1)

|a0|(1 + kn+1) + |an|(kn+1 + k2n)
max
|z|=1

|p(z)|.

For a better insight into both Bernstein and Turán-type inequalities, one can
refer to recently published monograph of Gardner et al. [3] (also see Marden [9],
Milovanović et al. [10], Rahman and Schmeisser [12]).

2. Main results

In this paper, we consider the class of polynomials of degree n > 2 having a zero
of order s, 0 6 s 6 n− 2, at the origin. For polynomial of degree 1, the polynomial
is simply p(z) = a0 + a1z and hence, we can easily evaluate max|z|=1 |p(z)| =
|a0| + |a1| and max|z|=1 |p′(z)| = |a1|. Also, when s = n − 1, the polynomial is

p(z) = an−1z
n−1 +anz

n and hence trivially, we have max|z|=1 |p(z)| = |an−1|+ |an|
and max|z|=1 |p′(z)| = (n − 1)|an−1| + n|an|. So, in both cases, we need not to
find their estimates as their exact values are known. We first prove the following
generalization as well as improvement of Theorem 1.1. More precisely, we prove

Theorem 2.1. If p(z) =
∑n

ν=s aνz
ν, 0 6 s 6 n− 2, is a polynomial of degree

n > 2 having all its zeros in |z| 6 k, k > 1, then

max
|z|=1

|zp′(z) − sp(z)| > (n− s)(|as| + |an|kn−s+1)

|as|(1 + kn−s+1) + |an|(kn−s+1 + k2n−2s)
max
|z|=1

|p(z)|

+
|as|k + |an|kn−s

|as|(1 + kn−s+1) + |an|(kn−s+1 + k2n−2s)
ζ(k, s),

where

(2.1) ζ(k, s) =























|as+2|kn−s−6(k4 − 1)
(√
k4 + 1 − 1

)

, if s 6 n− 5, n > 5,

|as+2|(k2 − 1)
(√
k4 + k2 + 1 − 1

)

, if s = n− 4, n > 4,

|as+2|k
(

√

k4+1
2 − 1

)

, if s = n− 3, n > 3,

|as+1|(k2 − 1), if s = n− 2, n > 2.

Remark 2.1. Setting s = 0 in Theorem 2.1, we get the following improve-
ment of Theorem 1.1 recently proved by Jain [7] as well as inequality (1.2), for
polynomials of degree n > 2.
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Corollary 2.1. If p(z) =
∑n

ν=0 aνz
ν is a polynomial of degree n > 2 having

all its zeros in |z| 6 k, k > 1, then

max
|z|=1

|p′(z)| > n(|a0| + |an|kn+1)

|a0|(1 + kn+1) + |an|(kn+1 + k2n)
max
|z|=1

|p(z)|

+
|a0|k + |an|kn

|a0|(1 + kn+1) + |an|(kn+1 + k2n)
ζ(k),

where

(2.2) ζ(k) =























|a2|kn−6(k4 − 1)(
√
k4 + 1 − 1), if n > 5,

|a2|(k2 − 1)(
√
k4 + k2 + 1 − 1), if n = 4,

|a2|k
(

√

k4+1
2 − 1

)

, if n = 3,

|a1|(k2 − 1), if n = 2.

Remark 2.2. As ζ(k) given by (2.2) is non-negative, it follows immediately
that Corollary 2.1 gives improved bound over Theorem 1.1. And to show that the
bounds of Corollary 2.1 is an improvement of (1.2), it is sufficient to show that

|a0| + |an|kn+1

|a0|(1 + kn+1) + |an|(kn+1 + k2n)
>

1

1 + kn
,

which is equivalent to showing |an|(k2n+1 −k2n) > |a0|(kn+1 −kn), that is kn|an| >
|a0|, which clearly holds by Lemma 3.6 with λ = 0.

Remark 2.3. In some cases the improvement can be significant and this we
show by means of the following example.

Example 2.1. Consider p(z) = z3 +3z2 + 11
4 z+ 3

4 . Clearly p(z) is a polynomial

of degree 3 having all its zeros in |z| 6 3
2 . We take k = 2 and find that

max
|z|=1

|p(z)| = 7.5.

min
|z|=2

|p(z)| = 0.75.

max
|z|=1

|p′(z)| > 2.5, (by (1.2)).

max
|z|=1

|p′(z)| > 4.06, (by Theorem 1.1).

max
|z|=1

|p′(z)| > 5.24, (by Corollary 2.1 for n = 3).

Further, we extend Theorem 2.1 to a more generalized result which yields an
improved result of some known inequalities as particular case.

Theorem 2.2. If p(z) =
∑n

ν=s aνz
ν , 0 6 s 6 n− 2, is a polynomial of degree

n > 2 having all its zeros in |z| 6 k, k > 1, then for 0 6 l < 1 and m =
min|z|=k |p(z)|
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max
|z|=1

|zp′(z) − sp(z)| > (n− s)(|as|ks + lm+ |an|kn+1)

(|as|ks + lm)(1 + kn−s+1) + |an|(kn+1 + k2n−s)
(2.3)

×
{

max
|z|=1

|p(z)| +
lm

ks

}

+
(|as|ks + lm)k + |an|kn

(|as|ks + lm)(1 + kn−s+1) + |an|(kn+1 + k2n−s)
ζ(k, s),

where ζ(k, s) is as defined in (2.1).

Remark 2.4. Putting l = 0, Theorem 2.2 reduces to Theorem 2.1.

Remark 2.5. Setting s = 0 in Theorem 2.2, we get the following generalization
of Corollary 2.1 as well as improvement of inequality (1.3) and a result recently
proved by Mir [11, Theorem 2], for polynomials of degree n > 2.

Corollary 2.2. If p(z) =
∑n

ν=0 aνz
ν is a polynomial of degree n > 2 having

all its zeros in |z| 6 k, k > 1, then for 0 6 l < 1 and m = min|z|=k |p(z)|

max
|z|=1

|p′(z)| > n(|a0| + lm+ |an|kn+1)

(|a0| + lm)(1 + kn+1) + |an|(kn+1 + k2n)
(2.4)

×
{

max
|z|=1

|p(z)| + lm
}

+
(|a0| + lm)k + |an|kn

(|a0| + lm)(1 + kn+1) + |an|(kn+1 + k2n)
ζ(k),

where ζ(k) is as defined in (2.2).

Remark 2.6. Since ζ(k) > 0, to verify that inequality (2.4) of Corollary 2.2 is
an improvement of inequality (1.3) due to Govil [5], it is sufficient to show that

|a0| + lm+ |an|kn+1

(|a0| + lm)(1 + kn+1) + |an|(kn+1 + k2n)
>

1

1 + kn
,

which is equivalent to

|an|(k2n+1 − k2n) > (|a0| + lm)(kn+1 − kn),

that is

kn|an| > |a0| + lm,

which clearly holds by Lemma 3.6.

Remark 2.7. Here also, in some cases the improvement is significant and we
illustrate this with the help of the previous example 2.1.

For k = 2, we have

max
|z|=1

|p′(z)| > 2.75, (by (1.3)),

whereas

max
|z|=1

|p′(z)| > 5.3, (by (2.4) of Corollary 2.2 for n = 3 and l = 1).
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3. Lemmas

We shall need the following lemmas in order to prove the above theorems and

verify the claims. For a polynomial p(z) of degree n, we will use q(z) = znp
(

1
z̄

)

.
The first lemma is due to Frappier et. al. [2].

Lemma 3.1. If P (z) =
∑n

ν=0 aνz
ν is a polynomial of degree n and let R > 1.

Then,

max
|z|=R

|p(z)| 6 Rn max
|z|=1

|p(z)|(3.1)

− |p′(0)|(Rn−1 −Rn−3)
(

√

R2 + 1 − 1
)

, n > 4,

max
|z|=R

|p(z)| 6 Rn max
|z|=1

|p(z)|(3.2)

− |p′(0)|(R2 −R)
(

√

R2 +R+ 1 − 1
)

, n = 3,

max
|z|=R

|p(z)| 6 Rn max
|z|=1

|p(z)| − |p′(0)|R
(

√

R2 + 1

2
− 1

)

, n = 2,(3.3)

max
|z|=R

|p(z)| 6 Rmax
|z|=1

|p(z)| − (R− 1)|p(0)|, n = 1.(3.4)

Lemma 3.2. Let f(z) be analytic in |z| < 1, with f(0) = a and |f(z)| 6 M ,

|z| < 1. Then

|f(z)| 6M
M |z| + |a|
|a||z| +M

, |z| < 1.

Lemma 3.2 is a well-known generalization of Schwarz’s lemma [13, p. 212].

Lemma 3.3. Let f(z) be analytic in |z| 6 1, with f(0) = a and |f(z)| 6 M ,

|z| 6 1. Then

|f(z)| 6M
M |z| + |a|
|a||z| +M

, |z| 6 1.

Proof. It easily follows from Lemma 3.2. �

Lemma 3.4. If p(z) =
∑n

ν=0 aνz
ν is a polynomial of degree n having all its

zeros in |z| 6 1, then

|q′(z)| 6 |p′(z)|.
The above lemma is due to Jain [7].

Lemma 3.5. If p(z) =
∑n

ν=0 aνz
ν is a polynomial of degree n, then

max
|z|=1

|p′(z)| + max
|z|=1

|q′(z)| > nmax
|z|=1

|p(z)|.

The result is due to Govil et al. [6].

Lemma 3.6. If p(z) =
∑n

ν=0 aνz
ν is a polynomial of degree n having all its

zeros in |z| 6 k, k > 0, then for any complex number λ with |λ| < 1 and m =
min|z|=k |p(z)|

kn|an| > |λ|m+ |a0|.
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Proof. By hypothesis, p(z) =
∑n

ν=0 aνz
ν is a polynomial of degree n having

all its zeros in |z| 6 k, k > 0. Then, the polynomial P (z) = e−i arg a0p(z) has the
same zeros as p(z). Here,

P (z) = e−i arg a0

{

|a0|ei arg a0 + a1z + · · · + an−1z
n−1 + anz

n
}

= |a0| + e−i arg a0

{

a1z + · · · + an−1z
n−1 + anz

n
}

.

Now, on |z| = k for any complex number λ with |λ| < 1 and m = min|z|=k p(z) 6= 0,
we have

|λ|m < m 6 |P (z)|.
Then by Rouche’s theorem, R(z) = P (z) + |λ|m has all its zeros in |z| < k and in
case m = 0, R(z) = P (z). Thus, in any case, R(z) has all its zeros in |z| 6 k. Now,

applying Vieta’s formula to R(z), we get |a0|+|λ|m
|an| 6 kn, i.e., kn|an| > |λ|m+ |a0|,

which completes the proof of the Lemma 3.6. �

4. Proof of the Theorems

Proof of Theorem 2.2. Let us first assume that p(z) =
∑n

ν=s aνz
ν is a

polynomial of degree n > 5 and s 6 n− 5. By hypothesis, p(z) has all its zeros in
|z| 6 k, k > 1. Now,

(4.1) p(z) = zsj(z),

where

(4.2) j(z) = as + as+1z + · · · + anz
n−s,

is a polynomial of degree n− s > 5. Consider a polynomial

(4.3) R(z) = p(z) +
m

ks
λzs,

where λ is any complex number with |λ| < 1 and m = min|z|=k |p(z)|. Suppose
m 6= 0, then for |z| = k

∣

∣

∣

m

ks
λzs

∣

∣

∣
< m 6 |p(z)|.

Then by Rouche’s theorem, it follows that R(z) has all its zeros in |z| < k and in
case m = 0, R(z) = p(z). Thus, in any case, R(z) has all its zeros in |z| 6 k, k > 1.
Now,

(4.4) R(z) =
λm

ks
zs + asz

s + as+1z
s+1 + · · · + anz

n = zsh(z),

where

(4.5) h(z) =
λm

ks
+ as + as+1z + · · · + anz

n−s,

and

(4.6) g(z) = zn−sh
(1

z̄

)

.

From (4.2) and (4.5), we have

(4.7) j′(z) = h′(z).
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We observe that

(4.8) H(z) = h(kz),

is a polynomial of degree n− s > 5 having all its zeros in |z| 6 1 and

(4.9) G(z) = zn−sH
(1

z̄

)

= kn−s
( z

k

)n−s

h
(k

z̄

)

= kn−sg
(z

k

)

, (by (4.6)).

By Lemma 3.4, we have

(4.10) G′(z) 6 H ′(z), |z| = 1.

Using (4.10) we can say that a zero zj, with |zj | = 1 and multiplicity mj , of H ′(z)
will also be a zero, with multiplicity (> mj), of G′(z), thereby helping us to write

(4.11) H ′(z) = φ(z)H1(z),

(4.12) G′(z) = φ(z)G1(z),

where
(4.13)

φ(z) =

{

1, H ′(z) 6= 0 on |z| = 1,
∏p

j=1(z − zj)mj ; |zj | = 1 ∀ j, H ′(z) has certain zeros on |z| = 1.

Now,

(4.14) H1(z) 6= 0, |z| = 1.

By (4.10), (4.11) and (4.12), we have

(4.15) G1(z) 6 H1(z), |z| = 1.

Now as H(z) has all its zeros in |z| 6 1, we can say by Gauss-Lucas theorem that
H ′(z) will also have all its zeros in |z| 6 1. Therefore by (4.11), (4.13) and (4.14),
we can say that

(4.16) ψ(z) =
G1(z)

H1(z)

is analytic in |z| > r, for certain r, with 0 < r < 1, including ∞ and accordingly

(4.17) f(z) = ψ
(1

z

)

,

with

f(0) = ψ(∞) = lim
z→∞

ψ(z),(4.18)

= lim
z→∞

G′(z)

H ′(z)
, (by (4.16), (4.11) and (4.12)),

=
λm
ks + as

ankn−s

is analytic in |z| < 1
r
, 1

r
> 1. Further |ψ(z)| 6 1, |z| = 1 by (4.15) and therefore

|f(z)| 6 1, |z| = 1, (by (4.17)),
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which by (4.18) and Lemma 3.3, helps us to write

|f(z)| 6
|z| +

∣

∣

∣

as+ λm
ks

ankn−s

∣

∣

∣

1 +
∣

∣

∣

as+ λm
ks

ankn−s

∣

∣

∣
|z|
, |z| 6 1,

i.e.

|f(reiθ)| 6 |an|knr + |ask
s + λm|

|asks + λm|r + |an|kn
, r 6 1 and 0 6 θ 6 2π,

i.e.
∣

∣

∣
ψ

(1

r
e−iθ

)
∣

∣

∣
6

|an|knr + |ask
s + λm|

|asks + λm|r + |an|kn
, 0 < r 6 1 and 0 6 θ 6 2π, (by (4.17)),

i.e.

|ψ(Re−iθ)| 6 |an|kn + |ask
s + λm|R

|asks + λm| + |an|knR
, R > 1 and 0 6 θ 6 2π,

i.e.

|G1(Re−iθ)| 6 |an|kn + |ask
s + λm|R

|asks + λm| + |an|knR
|H1(Re−iθ)|, R > 1, (by (4.16)),

i.e.

|G′(Re−iθ)| 6 |an|kn + |ask
s + λm|R

|asks + λm| + |an|knR
|H ′(Re−iθ)|, R > 1, (by (4.11) and (4.12)),

i.e.

|G′(z)| 6 |an|kn + |ask
s + λm||z|

|asks + λm| + |an|kn|z| |H
′(z)|, |z| > 1,

i.e.

(4.19) kn−s−2
∣

∣

∣
g′

(z

k

)∣

∣

∣
6

|an|kn + |ask
s + λm||z|

|asks + λm| + |an|kn|z| |h
′(kz)|,

|z| > 1, (by (4.8) and (4.9)).

By taking z = keiθ in (4.19), we get

kn−s−2|g′(eiθ)| 6 |an|kn + |ask
s + λm|k

|asks + λm| + |an|kn+1 |h′(k2eiθ)|, 0 6 θ 6 2π,

which implies

(4.20) kn−s−2 max
|z|=1

|g′(z)| 6 |an|kn + |ask
s + λm|k

|asks + λm| + |an|kn+1 max
|z|=k2

|h′(z)|.

Applying (3.1) of Lemma 3.1 to (4.20), we have

kn−s−2 max
|z|=1

|g′(z)| 6 |an|kn + |ask
s + λm|k

|asks + λm| + |an|kn+1

{

k2n−2s−2 max
|z|=1

|h′(z)|

− |as+2|(k2n−2s−4 − k2n−2s−8)
(

√

k4 + 1 − 1
)

}
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i.e.

(4.21) max
|z|=1

|g′(z)| 6 |an|kn + |ask
s + λm|k

|asks + λm| + |an|kn+1

{

kn−s max
|z|=1

|h′(z)|

− |as+2|(kn−s−2 − kn−s−6)
(

√

k4 + 1 − 1
)

}

.

By Lemma 3.5, we have

max
|z|=1

|g′(z)| + max
|z|=1

|h′(z)| > (n− s) max
|z|=1

|h(z)|,

and using (4.21), we get

max
|z|=1

|h′(z)| > (n− s)(|ask
s + λm| + |an|kn+1)

|asks + λm|(1 + kn−s+1) + |an|(kn+1 + k2n−s)
max
|z|=1

|h(z)|

+
|ask

s + λm|k + |an|kn

|asks + λm|(1 + kn−s+1) + |an|(kn+1 + k2n−s)

× |as+2|kn−s−6(k4 − 1)
(

√

k4 + 1 − 1
)

.

By (4.4) and (4.7), we have

max
|z|=1

|j′(z)| > (n− s)(|ask
s + λm| + |an|kn+1)

|asks + λm|(1 + kn−s+1) + |an|(kn+1 + k2n−s)
max
|z|=1

|R(z)|

+
|ask

s + λm|k + |an|kn

|asks + λm|(1 + kn−s+1) + |an|(kn+1 + k2n−s)

× |as+2|kn−s−6(k4 − 1)
(

√

k4 + 1 − 1
)

.

Again, by (4.1) and (4.3), we have

max
|z|=1

|zp′(z) − sp(z)| > (n− s)(|ask
s + λm| + |an|kn+1)

|asks + λm|(1 + kn−s+1) + |an|(kn+1 + k2n−s)
(4.22)

× max
|z|=1

∣

∣

∣
p(z) +

λm

ks
zs

∣

∣

∣

+
|ask

s + λm|k + |an|kn

|asks + λm|(1 + kn−s+1) + |an|(kn+1 + k2n−s)

× |as+2|kn−s−6(k4 − 1)
(

√

k4 + 1 − 1
)

.

For every complex number λ, we have |ask
s + λm| 6 |as|ks + |λ|m, and since both

( x+|an|kn+1

x(1+kn−s+1)+|an|(kn+1+k2n−s)

)

and
( xk+|an|kn

x(1+kn−s+1)+|an|(kn+1+k2n−s)

)
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are decreasing functions of x for k > 1, it follows from (4.22) that for every λ with
|λ| < 1 and |z| = 1,

max
|z|=1

|zp′(z) − sp(z)| > (n− s)(|as|ks + |λ|m+ |an|kn+1)

(|as|ks + |λ|m)(1 + kn−s+1) + |an|(kn+1 + k2n−s)
(4.23)

× max
|z|=1

∣

∣

∣
p(z) +

λm

ks
zs

∣

∣

∣

+
(|as|ks + |λ|m)k + |an|kn

(|as|ks + |λ|m)(1 + kn−s+1) + |an|(kn+1 + k2n−s)

× |as+2|kn−s−6(k4 − 1)
(

√

k4 + 1 − 1
)

.

Suppose z0 on |z| = 1 is such that

(4.24) max
|z|=1

|p(z)| = |p(z0)|.

Now,

(4.25)
∣

∣

∣
p(z0) +

λmzs
0

ks

∣

∣

∣
6 max

|z|=1

∣

∣

∣
p(z) +

λmzs

ks

∣

∣

∣
.

On the left hand side of inequality (4.25), for suitable choice of the argument of λ,
we have

(4.26)
∣

∣

∣
p(z0) +

λmzs
0

ks

∣

∣

∣
= |p(z0)| +

|λ|m
ks

.

Applying (4.24) and (4.26) to (4.25), we have

(4.27) max
|z|=1

|p(z)| +
|λ|m
ks

6 max
|z|=1

∣

∣

∣
p(z) +

λm

ks
zs

∣

∣

∣
.

Applying (4.27) to (4.23), we get

max
|z|=1

|zp′(z) − sp(z)| > (n− s)(|as|ks + |λ|m+ |an|kn+1)

(|as|ks + |λ|m)(1 + kn−s+1) + |an|(kn+1 + k2n−s)
(4.28)

×
{

max
|z|=1

|p(z)| +
|λ|m
ks

}

+
|as|ks + |λ|mk + |an|kn

(|as|ks + |λ|m)(1 + kn−s+1) + |an|(kn+1 + k2n−s)

× |as+2|kn−s−6(k4 − 1)
(

√

k4 + 1 − 1
)

.

Setting |λ| = l, 0 6 l < 1 in (4.28) gives inequality (2.3) for n > 5 and s 6 n− 5.
For the case n > 4 and s = n− 4, n > 3 and s = n− 3, n > 2 and s = n − 2, the
proof follows in a similar way as above but applying inequalities (3.2), (3.3) and
(3.4) respectively instead of (3.1) of Lemma 3.1 to inequality (4.20). �

Proof of Theorem 2.1. The proof of Theorem 2.1 follows on the same lines
as that of Theorem 2.2, just by taking λ = 0. �
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