PUBLICATIONS DE L'INSTITUT MATHÉMATIQUE Nouvelle série, tome 114 (128) (2023), 9–17

DOI: https://doi.org/10.2298/PIM2328009O

ON EMBEDDING OF F-HEDGEHOGS IN FUNCTION SPACES

Alexander V. Osipov

ABSTRACT. For a filter $\mathcal{F}, S_{\mathcal{F}} = \{\infty\} \cup \{(n,m) : n, m \in \mathbb{N}\}$ be the \mathcal{F} -hedgehog (\mathcal{F} -fan) of spininess ω where each (n,m) is isolated in $S_{\mathcal{F}}$ and a basic open neighborhood of ∞ is of the form $N(\varphi) = \{\infty\} \cup \{(n,m) : n \in \mathbb{N}, m \in \varphi(n)\}$ for function $\varphi \colon \mathbb{N} \to \mathcal{F}$. We study some connections among the \mathcal{F}^* -Menger property and an embedding of \mathcal{F} -hedgehog $S_{\mathcal{F}}$ into function spaces for any P-filter \mathcal{F} .

1. Introduction

A space X is said to be Menger [9] if for every sequence $(\mathcal{U}_n : n \in \mathbb{N})$ of open covers of X, there are finite subfamilies $\mathcal{V}_n \subset \mathcal{U}_n$ such that $\bigcup \{\mathcal{V}_n : n \in \mathbb{N}\}$ is a cover X. A space X is said to have *countable fan-tightness* [1] if whenever $A_n \subset X$ and $x \in \overline{A}_n$ $(n \in \mathbb{N})$, there are finite sets $F_n \subset A_n$ such that $x \in \bigcup \{F_n : n \in \mathbb{N}\}$.

Let $S_{\omega} = \{\infty\} \cup \{(n,m) : n, m \in \mathbb{N}\}$ be the sequential hedgehog (sequential fan) of spininess ω , where each (n,m) is isolated in S_{ω} and a basic open neighborhood of ∞ is of the form $N(\varphi) = \{\infty\} \cup \{(n,m) : n \in \mathbb{N}, m \ge \varphi(n)\}$ for a function $\varphi \colon \mathbb{N} \to \mathbb{N}$. Obviously S_{ω} does not have countable fan-tightness.

Archangel'skii [1] proved that every finite power of X is Menger if, and only if, $C_p(X)$ has countable fan-tightness. Hence, if every finite power of X is Menger, S_{ω} cannot be embedded into $C_p(X)$. A. V. Archangel'skii raised following natural question [2, Problem II.2.7]: Can S_{ω} be embedded into $C_p(X)$ for some Menger space X?

Sakai proved (under CH) that there is a Lusin set X (hence X is Menger) such that S_{ω} be embedded into $C_p(X)$ [10].

In this paper we study some connections among the \mathcal{F}^* -Menger property and an embedding of \mathcal{F} -hedgehog $S_{\mathcal{F}}$ into function spaces for any *P*-filter \mathcal{F} .

9

²⁰²⁰ Mathematics Subject Classification: Primary 54C35; Secondary 54C05; 54C65; 54A20; 54D65.

Key words and phrases: C_p -theory, Menger property, \mathcal{F} -hedgehog, function space. Communicated by Stevan Pilipović.

2. Main definitions and notation

Throughout this paper, all spaces are assumed to be Tychonoff. The set of positive integers is denoted by \mathbb{N} or ω . The space $P(\mathbb{N})$ splits into two important subspaces: the family of infinite subsets of \mathbb{N} , denoted $[\mathbb{N}]^{\infty}$, and the family of finite subsets of \mathbb{N} , denoted $[\mathbb{N}]^{<\infty}$.

Let \mathbb{R} be the real line, we put $\mathbb{I} = [0, 1] \subset \mathbb{R}$, and let \mathbb{Q} be the rational numbers.

Let $C_p(X)$ denote the space of continuous real-valued functions C(X) on a space X with the topology of pointwise convergence. Let $B_0(X) = C(X)$ and inductively define $B_{\alpha}(X)$ for each ordinal $\alpha \leq \omega_1$ to be the space of pointwise limits of sequences of functions in $\bigcup_{\beta < \alpha} B_{\beta}(X)$. So $B(X) = \bigcup_{\beta < \omega_1} B_{\beta}(X)$ a set of all functions of Baire, defined on a Tychonoff space X, provided with the pointwise convergence topology.

We recall that a subset of X that is the complete preimage of zero for a certain function from C(X) is called a zero-set. A subset $O \subseteq X$ is called a cozero-set (or functionally open) of X if $X \setminus O$ is a zero-set.

The family of Baire sets of a space X is the smallest family of sets containing the zero sets of continuous real-valued functions, and closed under countable unions and countable intersections. The Baire sets of X of multiplicative class 0, denoted Z(X), are the zero-sets of continuous real-valued functions. The sets of additive class 0, denoted CZ(X), are the complements of the sets in Z(X).

The symbol **0** stands for the constant function to 0. A basic open neighborhood of **0** is of the form $[F, (-\epsilon, \epsilon)] = \{f \in C(X) : f(F) \subset (-\epsilon, \epsilon)\}$, where $F \in [X]^{<\omega}$ and $\epsilon > 0$.

Let \mathcal{A} and \mathcal{B} be collections of subsets of an infinite set.

• Then $S_1(\mathcal{A}, \mathcal{B})$ denote the following hypothesis:

For each sequence $(A_n : n \in \mathbb{N})$ of elements of \mathcal{A} there is a sequence $(B_n : n \in \mathbb{N})$ such that, for each $n, B_n \in A_n$ and $\{B_n : n \in \mathbb{N}\}$ is an element of \mathcal{B} .

• The symbol $S_{\text{fin}}(\mathcal{A}, \mathcal{B})$ denote the following hypothesis:

For each sequence $(A_n : n \in \mathbb{N})$ of elements of \mathcal{A} there is a sequence $(B_n : n \in \mathbb{N})$ such that, for each $n, B_n \subset A_n$ is finite, and $\bigcup \{B_n : n \in \mathbb{N}\}$ is an element of \mathcal{B} .

• $U_{\text{fin}}(\mathcal{A}, \mathcal{B})$: For each sequence $(A_n : n \in \mathbb{N})$ of elements of \mathcal{A} there is a sequence $(B_n : n \in \mathbb{N})$ such that, for each $n, B_n \subset A_n$ is finite, and $\{\bigcup B_n : n \in \mathbb{N}\}$ is an element of \mathcal{B} .

An open cover \mathcal{U} of a space X is:

• an ω -cover if X does not belong to \mathcal{U} and every finite subset of X is contained in a member of \mathcal{U} . Note that if \mathcal{U} is an ω -cover of a set X and $X \notin \mathcal{U}$, then each finite subset of X is contained in infinitely many members of \mathcal{U} .

• a γ -cover if it is infinite and each $x \in X$ belongs to all but finitely many elements of \mathcal{U} . Note that every γ -cover contains a countably γ -cover.

• a γ_F -shrinkable if it is an γ -cover \mathcal{U} of co-zero sets of X and there exists a γ -cover $\{F(U) : U \in \mathcal{U}\}$ of zero-sets of X with $F(U) \subset U$ for every $U \in \mathcal{U}$.

For a topological space X we denote:

- O—the family of all open covers of X.
- Ω —the family of all open ω -covers of X.

- Γ —the family of all countable open γ -covers of X.
- Γ_F —the family of all countable γ_F -shrinkable covers of X.
- \mathcal{B} —the family of all countable Baire covers of X.
- \mathcal{B}_{Γ} —the family of all countable Baire γ -covers of X.
- \mathcal{B}_{Ω} —the family of all countable Baire ω -covers of X.
- $S_1(0,0)$ denote the Rothberger property.
- $S_{\text{fin}}(0,0)$ denotes the Menger property.
- $U_{\text{fin}}(\mathcal{O},\Gamma)$ denotes the Hurewicz property.

Let X be a topological space, and $x \in X$. A subset A of X converges to x, $x = \lim A$, if A is infinite, $x \notin A$, and for each neighborhood U of x, $A \setminus U$ is finite.

- $\Omega_x = \{A \subseteq X : x \in \overline{A} \smallsetminus A\}.$
- $\Omega_x^{\omega} = \{A \subseteq X : |A| = \aleph_0 \text{ and } x \in \overline{A} \smallsetminus A\}.$
- $\Gamma_x = \{A \subseteq X : x = \lim A\}.$
- $\Gamma_x^{\omega} = \{A \subseteq X : |A| = \aleph_0 \text{ and } x = \lim A\}.$

3. An embedding of sequential hedgehogs in function spaces

THEOREM 3.1. [10, Theorem 3.2] The following conditions are equivalent for a space X:

- (1) S_{ω} cannot be embedded into $C_p(X)$.
- (2) X has property $S_{\text{fin}}(\Gamma_F, \Omega)$.

Let \mathcal{P} be a topological property. Arhangel'skiĭ calls X projectively \mathcal{P} if every second countable continuous image of X is \mathcal{P} .

By Theorem 3.1 and [8, Theorem 11.1], we have the following result.

THEOREM 3.2. The following conditions are equivalent for a space X:

- (1) S_{ω} cannot be embedded into $C_p(X)$.
- (2) X has property projectively $S_{\text{fin}}(\Gamma, \Omega)$.
- (3) $C_p(X)$ has property $S_{\text{fin}}(\Gamma_x^{\omega}, \Omega_x^{\omega})$.
- (4) $C_p(X)$ has property $S_{\text{fin}}(\Gamma_x, \Omega_x)$.

Note that, if every finite power of X is projectively Menger, then X is projectively $S_{\text{fin}}(\Omega, \Omega)$ in [10, Proposition 4.4].

COROLLARY 3.1. If every finite power of X is projectively Menger, then the following conditions are equivalent:

(1) S_{ω} cannot be embedded into $C_p(X)$.

(2) X has property projectively $S_{\text{fin}}(\Omega, \Omega)$.

COROLLARY 3.2. [10, Proposition 4.12] Every finite power of X is projectively Menger if, and only if, for any $n \in \mathbb{N}$, S_{ω} cannot be embedded into $C_p(X^n)$.

We summarize implications in the following diagram.

Diagram 1.

LEMMA 3.1. [3, Lemma 80] Let $X = \{x\} \cup \{x_{n,m} : n, m \in \mathbb{N}\}$ be a Hausdorff space such that $x_{n,m} \to x \ (m \to \infty)$ for each $n \in \mathbb{N}$, and for any $\varphi \in \mathbb{N}^{\mathbb{N}}$, $x \notin \overline{\{x_{n,m} : n \in \mathbb{N}, m \leq \varphi(n)\}}$. Then S_{ω} can be embedded into X.

THEOREM 3.3. The following conditions are equivalent for a space X:

(1) S_{ω} cannot be embedded into B(X).

(2) X has property $S_{\text{fin}}(\mathcal{B}_{\Gamma}, \mathcal{B}_{\Omega})$.

- (3) X has property $S_1(\mathcal{B}_{\Gamma}, \mathcal{B}_{\Omega})$.
- (4) B(X) has property $S_{\text{fin}}(\Gamma_x, \Omega_x)$.

PROOF. (3) \Rightarrow (1). Let $S_{\omega} = \{\mathbf{0}\} \cup \{f_{n,k} : n, k \in \mathbb{N}\} \subseteq B(X)$, where $f_{n,k} \to \mathbf{0}$ $(k \to \infty)$. For each $n, k \in \mathbb{N}$, we put $U_{n,k} = \{x \in X : |f_{n,k}(x)| < \frac{1}{n}\}$. Each $U_{n,k}$ is a Baire set in X. Let $\mathcal{U}_n = \{U_{n,k} : k \in \mathbb{N}\}$. If $I = \{n \in \mathbb{N} : X \in \mathcal{U}_n\}$ is infinite, some sequence $\{f_{n,k_n} : n \in I\}$ converges to **0** uniformly. This is a contradiction, so without loss of generality, we may assume $U_{n,k} \neq X$ for each $n, k \in \mathbb{N}$. We can easily check that the condition $f_{n,k} \to \mathbf{0}$ $(k \to \infty)$ implies that \mathcal{U}_n is a Baire γ -cover of X. Then, by (3), there is $\{U_{n,k_n} : n \in \mathbb{N}\}$ a ω -cover of X such that $U_{n,k_n} \in \mathcal{U}_n$ for each $n \in \mathbb{N}$. Then $\mathbf{0} \in \{f_{n,k_n} : n \in \mathbb{N}\}$, this is a contradiction.

(1) \Rightarrow (3). Let $\mathcal{U}_n = \{U_{n,k} : k \in \mathbb{N}\}$ be a Baire γ -cover of X for each $n \in \mathbb{N}$ and $\mathcal{U}_{\varphi} = \{U_{n,k} : n \in \mathbb{N}, k \leq \varphi(n)\}$ is not an ω -cover of X for any $\varphi \in \mathbb{N}^{\mathbb{N}}$. For each $n, k \in \mathbb{N}$, we take a Baire function $f_{n,k} : X \to [0,1]$ such that $f_{n,k}(x) = 0$ for all $x \in U_{n,k}$ and $f_{n,k} = 1$ for all $x \in X \setminus U_{n,k}$. Then $f_{n,k} \to \mathbf{0}$ $(k \to \infty)$. Let $\varphi \in \mathbb{N}$. Since \mathcal{U}_{φ} is not an ω -cover of X, there is a finite subset $F \subset X$ such that F is not contained in any member of \mathcal{U}_{φ} . Then we can easily check $\{f \in B(X) : f(F) \subset (-\frac{1}{2}, \frac{1}{2})\} \cap \{f_{n,k} : n \in \mathbb{N}, k \leq \varphi(n)\} = \emptyset$. By Lemma 3.1, S_{ω} can be embedded into $\{\mathbf{0}\} \cup \{f_{n,m} : n, m \in \mathbb{N}\} \subset B(X)$.

(2) \Leftrightarrow (3). By Theorem 9 in [11], $S_{\text{fin}}(\mathcal{B}_{\Gamma}, \mathcal{B}_{\Omega}) = S_1(\mathcal{B}_{\Gamma}, \mathcal{B}_{\Omega}).$

(3) \Leftrightarrow (4). By Theorem 6.1 in [7], $S_1(\mathcal{B}_{\Gamma}, \mathcal{B}_{\Omega}) = S_{\text{fin}}(\Gamma_x, \Omega_x).$

By [11, Theorem 6], $S_1(\mathcal{B}_{\Gamma}, \mathcal{B}) = S_{\text{fin}}(\mathcal{B}_{\Gamma}, \mathcal{B})$. Note also that, if all finite powers of X have property $S_1(\mathcal{B}_{\Gamma}, \mathcal{B})$, then X has property $S_{\text{fin}}(\mathcal{B}_{\Omega}, \mathcal{B}_{\Omega})$ [11, Theorem 20].

COROLLARY 3.3. If all finite powers of X have property $S_1(\mathcal{B}_{\Gamma}, \mathcal{B})$ then the following conditions are equivalent:

- (1) S_{ω} cannot be embedded into B(X).
- (2) X has property $S_{\text{fin}}(\mathcal{B}_{\Omega}, \mathcal{B}_{\Omega})$.

COROLLARY 3.4. Every finite power of X have property $S_1(\mathcal{B}_{\Gamma}, \mathcal{B})$ if, and only if, for any $n \in \mathbb{N}$, S_{ω} cannot be embedded into $B(X^n)$.

We summarize implications in the following diagram.

$$\begin{array}{c} X \text{ is } S_{\mathrm{fin}}(\mathcal{B}_{\Omega}, \mathcal{B}_{\Omega}) \\ \downarrow \\ S_{\omega} \not\subset B(X) \Leftrightarrow X \text{ is } S_{\mathrm{fin}}(\mathcal{B}_{\Gamma}, \mathcal{B}_{\Omega}) \\ \downarrow \\ X \text{ is } S_{1}(\mathcal{B}_{\Gamma}, \mathcal{B}) \\ \text{Diagram } 2. \end{array}$$

PROPOSITION 3.1. There is a space X such that S_{ω} can be embedded into B(X), but S_{ω} cannot be embedded into $C_p(X)$.

PROOF. Let X be the real line \mathbb{R} with the usual topology. By [4, Theorem 2.2], every σ -compact topological space is a member of class $S_{\text{fin}}(\Omega, \Omega)$. Hence, X has the property $S_{\text{fin}}(\Gamma, \Omega)$. By Theorem 3.2, S_{ω} cannot be embedded into $C_p(X)$. Since X has not property $S_1(\Gamma, \Omega)$, it has not property $S_1(\mathcal{B}_{\Gamma}, \mathcal{B}_{\Omega})$. Hence, by Theorem 3.3, S_{ω} can be embedded into B(X).

4. An embedding of *F*-hedgehogs in function spaces

For sets $a, b \in [\mathbb{N}]^{\infty}$, we write $a \subseteq^* b$ if the set $a \smallsetminus b$ is finite. A semifilter [12] is a set $S \subseteq [\mathbb{N}]^{\infty}$ such that, for each set $s \in S$ and each set $b \in [\mathbb{N}]^{\infty}$ with $s \subseteq^* b$, we have $b \in S$. Important examples of semifilters include the maximal semifilter $[\mathbb{N}]^{\infty}$, the minimal semifilter cF of all cofinite sets, and every nonprincipal ultrafilter on \mathbb{N} . By filter we mean a semifilter closed under finite intersections.

An infinite set $B \subseteq \mathbb{N}$ is said to be a *pseudointersection* of a family $\mathcal{A} \subseteq \mathcal{F}$ if $B \subseteq^* A$ for any $A \in \mathcal{A}$. By P-filter we mean a semifilter \mathcal{F} closed under countable pseudointersection, i.e. if $\mathcal{A} = \{A_n : A_n \in \mathcal{F}, n \in \mathbb{N}\}\$ and B is a pseudointersection of \mathcal{A} then $B \in \mathcal{F}$.

DEFINITION 4.1. Let \mathcal{F} be a filter. A sequence $(x_n : n \in \mathbb{N})$ of elements of a topological space $X \ \mathcal{F}^*$ -converges to $x \in X$, written $x_n \xrightarrow{\mathcal{F}^*} x$, if

- (1) for every neighborhood U of x, we have $\{n \in \mathbb{N} : x_n \in U\} \in \mathcal{F}$,
- (2) for every $F \in \mathcal{F}$ there is a neighborhood U of x such that
 - $\{n \in \mathbb{N} : x_n \in U\} = F.$

For a filter $\mathcal{F}, S_{\mathcal{F}} = \{\infty\} \cup \{(n,m) : n, m \in \mathbb{N}\}$ be the \mathcal{F} -hedgehog (\mathcal{F} -fan) of spininess ω , where each (n, m) is isolated in $S_{\mathcal{F}}$ and a basic open neighborhood of ∞ is of the form $N(\varphi) = \{\infty\} \cup \{(n,m) : n \in \mathbb{N}, m \in \varphi(n)\}$ for function $\varphi : \mathbb{N} \to \mathcal{F}$. First, we note that the topology of $S_{\mathcal{F}}$ can be characterized by the following

conditions:

- (a) the points of $\mathbb{N} \times \mathbb{N}$ are isolated,
- (b) for every $n \in \mathbb{N}$, the sequence $((n, m) : m \in \mathbb{N}) \mathcal{F}^*$ -converges to $\{\infty\}$,
- (c) if $A \subset \mathbb{N} \times \mathbb{N}$, and for each $n \in \mathbb{N}$ there is $B_n \in \mathcal{F}$ such that $A \cap \{(n,m) :$ $m \in B_n$ = \emptyset , then { ∞ } $\notin \overline{A}$.

We need the following lemma, similar to Lemma 79 in [3].

LEMMA 4.1. Let $\mathcal{F} \subseteq [\mathbb{N}]^{\infty}$ be a *P*-filter and let $X = \{x_{n,m} : n, m \in \mathbb{N}\} \cup \{p\}$ be a Hausdorff space such that

(1) all points $x_{n,m}$ and p are distinct,

- (2) for every $n, m, k \in \mathbb{N}$, $x_{n,m} \notin \{x_{n_i,j} : 1 \leq i \leq k, j \in \mathbb{N}\} \setminus \{x_{n,m}\}$,
- (3) for every $n \in \mathbb{N}$, $\sigma_n = (x_{n,m} : m \in \mathbb{N}) \mathfrak{F}^*$ -converges to p, and
- (4) if $A \subset X \setminus \{p\}$, and for each $n \in \mathbb{N}$ there is $B_n \in \mathcal{F}$ such that
 - $A \cap \{x_{n,m} : m \in B_n\} = \emptyset, \text{ then } p \notin A.$

Then X contains a subspace homeomorphic to $S_{\mathcal{F}}$.

PROOF. For $n \in \mathbb{N}$, denote $S_n = \{x_{n,m} : m \in \mathbb{N}\}$. For every n, m, there are disjoint neighborhoods $O_{n,m} \ni q_{n,m}$ and $N_{n,m} \ni p$. Hence, there exists $P_{n,m} = \{F_{n,m}^i : i \in \mathbb{N}, F_{n,m}^i \in \mathcal{F}\}$ such that $\{p\} \cup \{x_{n,i} : n \in \mathbb{N}, i \in F_{n,m}^i\} \subseteq N_{n,m}$. Since \mathcal{F} is a *P*-filter, there is a pseudointersection $B \in \mathcal{F}$ of $\{F_{n,m}^i : i, n, m \in \mathbb{N}\}$. Since $B \subseteq^* F_{n,m}^i$ for any $i, n, m \in \mathbb{N}$, there is a function $\varphi : \mathbb{N} \to \mathcal{F} \cap B$ such that for every n, m, there are at most finitely many k such that $N_{n,m} \cap S_k \not\supseteq \{x_{k,l} : l \in \varphi(k) \subseteq B \cap F_{n,m}^l\}$. Denote the set of all these k by $K_{n,m}$.

Put $Z = \{p\} \cup \{x_{k,l} : l \in \varphi(k)\}$. Put $h(p) = \{\infty\}$ and $h(x_{k,l}) = (k, \psi_k(l))$ whenever $l \in \varphi(k)$ where $\psi_k : \varphi(k) \to \mathbb{N}$ is a monotonic bijection for every $k \in \mathbb{N}$. Then h is an homeomorphism of Z onto $S_{\mathcal{F}}$. We have to check only that the point of $Z \setminus \{p\}$ are isolated in Z. Let $x_{n,m} \in Z$ and $C_{n,m} = \{p\} \cup \{x_{k,l} : k \in K_{n,m}, l \in \varphi(k)\}$. Since $O_{n,m} \cap N_{n,m} = \emptyset$, $O_{n,m} \cap Z \subset C_{n,m}$. By condition (2), all points of $C_{n,m}$ other than p are isolated.

DEFINITION 4.2. Let X be a topological space and $\mathcal{F} \subseteq [\mathbb{N}]^{\infty}$ be a filter.

A cover V = (V_n : n ∈ N) is a F^{*}-γ-cover, if it is infinite, each x ∈ X {n : x ∈ V_n} ∈ F and each F ∈ F there is K ∈ [X]^{<∞} such that {n : K ⊆ V_n} = F.
A cover {V_n : n ∈ N} is called a *refinement* of the cover {U_n : n ∈ N}, if V_n ⊆ U_n for each n ∈ N. An F^{*}-γ-cover {U_n : n ∈ N} is F^{*}-γ_F-shrinkable if there exists a zero-set F^{*}-γ-cover that is a refinement of {U_n : n ∈ N}.

For a topological space X and a filter $\mathcal{F} \subseteq [\mathbb{N}]^{\infty}$ we denote:

- \mathcal{F}^* - Γ the family of all countable open \mathcal{F}^* - γ -covers of X.
- \mathcal{F}^* - Γ_F the family of all countable co-zero \mathcal{F}^* - γ -shrinkable covers of X.
- \mathcal{F}^* - $\Gamma^{\omega}_x = \{A \subseteq X : |A| = \aleph_0 \text{ and } A \xrightarrow{\mathcal{F}^*} x\}.$

DEFINITION 4.3. Let $\mathcal{F} \subseteq [\mathbb{N}]^{\infty}$ be a semifilter. A space X is \mathcal{F}^* -Menger, if for every sequence $(\mathcal{U}_n : n \in \mathbb{N})$ of open \mathcal{F}^* - Γ covers of X, there are finite subfamilies $\mathcal{V}_n \subset \mathcal{U}_n$ such that $\bigcup \{\mathcal{V}_n : n \in \mathbb{N}\}$ is an open cover of X, i.e., X has property $U_{\text{fin}}(\mathcal{F}^*$ - $\Gamma, \mathcal{O})$.

DEFINITION 4.4. Let \mathcal{P} be a topological property. A space X has property condensationly \mathcal{P} if every second countable one-to-one continuous image of X is \mathcal{P} .

Note that if X has the property projectively \mathcal{P} then it has the property condensationly \mathcal{P} .

PROPOSITION 4.1. Let \mathfrak{F} be a filter and X has a coarser second countable topology. Then X has the property $S_{\text{fin}}(\mathfrak{F}^*-\Gamma_F,\Omega)$ if and only if it has the property condensationly $S_{\text{fin}}(\mathfrak{F}^*-\Gamma,\Omega)$.

14

PROOF. The proof is similar to the proof of [8, Theorem 10.2].

THEOREM 4.1. Let \mathcal{F} be a *P*-filter. Then the following conditions are equivalent for a space X:

(1) $S_{\mathcal{F}}$ cannot be embedded into $C_p(X)$.

(2) X has property $S_{\text{fin}}(\mathfrak{F}^* \cdot \Gamma_F, \Omega)$.

(3) $C_p(X)$ has property $S_{\text{fin}}(\mathcal{F}^* - \Gamma_x^{\omega}, \Omega_x^{\omega})$.

PROOF. (1) \Rightarrow (2). Assume that there is a sequence $(\mathcal{U}_n : n \in \mathbb{N})$ such that, for each $n, \mathcal{U}_n \in \mathcal{F}^* \cdot \Gamma_F$, and if $\mathcal{W}_n \in [\mathcal{U}_n]^{<\omega}$ for each $n \in \mathbb{N}$ then $\bigcup \{\mathcal{W}_n : n \in \mathbb{N}\} \notin \Omega$. Let $\mathcal{V}_n = \mathcal{U}_1 \cap \ldots \cap \mathcal{U}_n$ for each $n \in \mathbb{N}$. Since \mathcal{F} is a *P*-filter, $\mathcal{V}_n \in \mathcal{F}^n \cdot \Gamma_F^*$ for each $n \in \mathbb{N}$. By Theorem 6 and [5, Corollary 7], \mathcal{F}^n is homeomorphic to \mathcal{F} for any $n \in \mathbb{N}$. Hence, $\mathcal{V}_n \in \mathcal{F} \cdot \Gamma_F^*$ for each $n \in \mathbb{N}$.

Let $\mathcal{V}_n = \{V_{n,m} : m \in \mathbb{N}\}$ and $\mathcal{Z}_n = \{Z_{n,m} : m \in \mathbb{N}\}$ is a zero-set family such that $\mathcal{Z}_n \in \mathcal{F}$ - Γ and $Z_{n,m} \subseteq V_{n,m}$ for each $m \in \mathbb{N}$.

For each $n, m \in \mathbb{N}$, we put

$$f_{n,m}(x) = \begin{cases} 0, & x \in Z_{n,m} \\ n + \frac{1}{m}, & x \in X \smallsetminus V_{n,m} \end{cases}$$

Consider the set $Y = \{0\} \cup \{f_{n,m} : n, m \in \mathbb{N}\}$. By construction, the set Y have all conditions in Lemma 4.1.

We check the condition (4). Let $A \subset Y \setminus \{\mathbf{0}\}$, and for each $n \in \mathbb{N}$ there is $B_n \in \mathcal{F}$ such that $A \cap \{f_{n,m} : m \in B_n\} = \emptyset$. Consider a pseudointersection S of $\{B_n : n \in \mathbb{N}\}$. Since \mathcal{F} is a P-filter, $S \in \mathcal{F}$. There exists a neighborhood W_1 of $\mathbf{0}$ such that $|W_1 \cap A \cap \{f_{n,m} : m \in \mathbb{N}\}| < \aleph_0$ for each $n \in \mathbb{N}$. Note that if $\mathcal{O}_n \in [\mathcal{V}_n]^{<\omega}$ for each $n \in \mathbb{N}$ then $\bigcup \{\mathcal{O}_n : n \in \mathbb{N}\} \notin \Omega$. Hence there is a neighborhood W_2 of $\mathbf{0}$ such that $W_2 \cap W_1 \cap A \cap \{f_{n,m} : m \in \mathbb{N}\} \notin \Omega$. Hence there is a neighborhood W_2 of $\mathbf{0}$ such that $W_2 \cap W_1 \cap A \cap \{f_{n,m} : m \in \mathbb{N}\} = \emptyset$ for each $n \in \mathbb{N}$. Let $W = W_1 \cap W_2$ then $W \cap A = \emptyset$ and $\mathbf{0} \notin \overline{A}$.

 $(2) \Rightarrow (1)$. Assume that $S_{\mathcal{F}} = \{\mathbf{0}\} \cup \{f_{n,m} : n, m \in \mathbb{N}\} \subset C_p(X)$, where $f_{n,m}$ \mathcal{F}^* -converges to $\mathbf{0} \ (m \to \infty)$. For each $n, m \in \mathbb{N}$, we put

 $U_{n,m} = \{x \in X : |f_{n,m}(x)| < \frac{1}{n}\}, Z_{n,m} = \{x \in X : |f_{n,m}(x)| \leq \frac{1}{n+1}\}.$

Each $U_{n,m}$ (resp., $Z_{n,m}$) is a cozero-set (resp., zero-set) in X with $Z_{n,m} \subset U_{n,m}$. Let $\mathcal{U}_n = \{U_{n,m} : m \in \mathbb{N}\}$ and $\mathcal{Z}_n = \{Z_{n,m} : m \in \mathbb{N}\}$. If $I = \{n \in \mathbb{N} : X \in \mathcal{U}_n\}$ is infinite, some sequence $\{f_{n,m_n} : n \in I\}$ converges to **0** uniformly. This is a contradiction, so without loss of generality, we may assume $U_{n,m} \neq X$ for each $n, m \in \mathbb{N}$. We can easily check that the condition $f_{n,m}$ \mathcal{F} -converges to **0** $(m \to \infty)$ implies that $\mathcal{Z}_n \in \mathcal{F}$ - Γ_F^* of X. By condition (2), there is a sequence $(\mathcal{W}_n : n \in \mathbb{N})$ such that, for each $n, \mathcal{W}_n \subset \mathcal{Z}_n$ is finite, and $\bigcup \{\mathcal{W}_n : n \in \mathbb{N}\}$ is an element of Ω . Let $\mathcal{W}_n = \{Z_{n,m_1}, ..., Z_{n,m_{k(n)}}\}$ for each $n \in \mathbb{N}$. Then $\mathbf{0} \in \overline{\{f_{n,m_i} : n \in \mathbb{N}, 1 \leq i \leq k(n)\}}$. This is a contradiction.

The proof of implication $(2 \Leftrightarrow 3)$ is similar to the proof of Theorem 7.2 in [6]. \Box

COROLLARY 4.1. Let \mathcal{F} be a *P*-filter and *X* has a coarser second countable topology. Then $S_{\mathcal{F}}$ cannot be embedded into $C_p(X)$ if and only if *X* has property condensationly $S_{\text{fin}}(\mathcal{F}^* \cdot \Gamma, \Omega)$.

THEOREM 4.2. The following conditions are equivalent for a space X:

- (1) $S_{\mathcal{F}}$ cannot be embedded into B(X).
- (2) X has property $S_1(\mathcal{B}_{\mathcal{F}^*-\Gamma}, \mathcal{B}_{\Omega})$.
- (3) B(X) has property $S_{\text{fin}}(\mathcal{F}^* \Gamma_x, \Omega_x)$.

PROOF. The proof of implication $(1 \Leftrightarrow 2)$ is similar to the proof of implication $(1 \Leftrightarrow 2)$ of Theorem 4.1. The proof of implication $(2 \Leftrightarrow 3)$ is similar to the proof of implication $(1 \Leftrightarrow 2)$ of [7, Theorem 6.1].

COROLLARY 4.2. Assume that X has property $S_{\text{fin}}(\mathcal{B}_{\Omega}, \mathcal{B}_{\Omega})$ and \mathcal{F} is a P-filter. Then $S_{\mathcal{F}}$ cannot be embedded into B(X).

We summarize implications observed in this paper (**con.** is an abbreviation for **condensationly**).

Diagram 3.

QUESTION 1. Assume that all finite powers of X have property condensationly $\mathcal{F}^*\text{-}\mathsf{Menger}.$

- a). Does it follow that X satisfies condensationly $S_{\text{fin}}(\Omega, \Omega)$?
- b). Does it follow that $S_{\mathcal{F}}$ cannot be embedded into $C_p(X^n)$ for every $n \in \mathbb{N}$?

QUESTION 2. Assume that all finite powers of X have property $S_{\text{fin}}(\mathcal{B}_{\mathcal{F}^*-\Gamma}, \mathcal{B})$. a). Does it follow that X satisfies $S_{\text{fin}}(\mathcal{B}_{\Omega}, \mathcal{B}_{\Omega})$?

- a). Does it follow that A satisfies $D_{\text{fin}}(D\Omega, D\Omega)$:
- b). Does it follow that $S_{\mathcal{F}}$ cannot be embedded into $B(X^n)$ for every $n \in \mathbb{N}$?

References

- A. V. Arhangel'skiĭ, Hurewicz spaces, analytic sets and fan tightness of function spaces, Sov. Math. Dokl. 33 (1986) 396–399.
- 2. _____, Projective σ -compactness, ω_1 -caliber, and C_p -spaces, Topology Appl. 104 (2000) 13–26.
- M. Bonanzinga, F. Cammaroto, M. Matveev, Projective versions of selection principles, Topology Appl. 157 (2010) 874–893.
- W. Just, A.W. Miller, M. Scheepers, P.J. Szeptycki, The combinatorics of open covers II, Topology Appl. 73 (1996) 241–266.
- A. Medini, L. Zdomskyy, Every filter is homeomorhic to its square, Bull. Pol. Acad. Sci., Math. 64 (2016) 63–67.
- A. V. Osipov, Classification of selectors for sequences of dense sets of C_p(X), Topology Appl. 242 (2018) 20–32.
- Classification of selectors for sequences of dense sets of Baire functions, Topology Appl. 258 (2019) 251–267.
- Projective versions of the properties in the Scheepers Diagram, Topology Appl. 278 (2020) 107232.

- 9. W. Hurewicz, Über eine verallgemeinerung des Borelshen Theorems, Math. Z. 24 (1925) 401–421.
- M. Sakai, The projective Menger property and an embedding of S_ω into function spaces, Topology Appl. **220** (2017) 118–130.
- M. Scheepers, B. Tsaban, The combinatorics of Borel covers, Topology Appl. 121 (2002) 357–382.
- Products of Menger spaces: A combinatorial approach, Ann. Pure Appl. Logic 168 (2017) 1–18.

Krasovskiĭ Institute of Mathematics and Mechanics (Received 28 07 2022) Ural Federal University Yekaterinburg Russia OAB@list.ru