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ON EMBEDDING OF F-HEDGEHOGS

IN FUNCTION SPACES

Alexander V. Osipov

Abstract. For a filter F, SF = {∞} ∪ {(n, m) : n, m ∈ N} be the F-hedgehog
(F-fan) of spininess ω where each (n, m) is isolated in SF and a basic open
neighborhood of ∞ is of the form N(ϕ) = {∞} ∪ {(n, m) : n ∈ N, m ∈ ϕ(n)}
for function ϕ : N → F. We study some connections among the F∗-Menger
property and an embedding of F-hedgehog SF into function spaces for any
P -filter F.

1. Introduction

A space X is said to be Menger [9] if for every sequence (Un : n ∈ N) of open
covers of X , there are finite subfamilies Vn ⊂ Un such that

⋃

{Vn : n ∈ N} is a
cover X . A space X is said to have countable fan-tightness [1] if whenever An ⊂ X

and x ∈ Ān (n ∈ N), there are finite sets Fn ⊂ An such that x ∈
⋃

{Fn : n ∈ N}.
Let Sω = {∞}∪{(n,m) : n,m ∈ N} be the sequential hedgehog (sequential fan)

of spininess ω, where each (n,m) is isolated in Sω and a basic open neighborhood
of ∞ is of the form N(ϕ) = {∞} ∪ {(n,m) : n ∈ N,m > ϕ(n)} for a function
ϕ : N → N. Obviously Sω does not have countable fan-tightness.

Archangel’skĭı [1] proved that every finite power of X is Menger if, and only
if, Cp(X) has countable fan-tightness. Hence, if every finite power of X is Menger,
Sω cannot be embedded into Cp(X). A. V. Archangel’skii raised following natural
question [2, Problem II.2.7]: Can Sω be embedded into Cp(X) for some Menger
space X?

Sakai proved (under CH) that there is a Lusin set X (hence X is Menger) such
that Sω be embedded into Cp(X) [10].

In this paper we study some connections among the F
∗-Menger property and

an embedding of F-hedgehog SF into function spaces for any P -filter F.
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2. Main definitions and notation

Throughout this paper, all spaces are assumed to be Tychonoff. The set of
positive integers is denoted by N or ω. The space P (N) splits into two important
subspaces: the family of infinite subsets of N, denoted [N]∞, and the family of finite
subsets of N, denoted [N]<∞.

Let R be the real line, we put I = [0, 1] ⊂ R, and let Q be the rational numbers.
Let Cp(X) denote the space of continuous real-valued functions C(X) on a

space X with the topology of pointwise convergence. Let B0(X) = C(X) and
inductively define Bα(X) for each ordinal α 6 ω1 to be the space of pointwise
limits of sequences of functions in

⋃

β<α Bβ(X). So B(X) =
⋃

β<ω1
Bβ(X) a set of

all functions of Baire, defined on a Tychonoff space X , provided with the pointwise
convergence topology.

We recall that a subset of X that is the complete preimage of zero for a certain
function from C(X) is called a zero-set. A subset O ⊆ X is called a cozero-set (or
functionally open) of X if X rO is a zero-set.

The family of Baire sets of a space X is the smallest family of sets containing
the zero sets of continuous real-valued functions, and closed under countable unions
and countable intersections. The Baire sets of X of multiplicative class 0, denoted
Z(X), are the zero-sets of continuous real-valued functions. The sets of additive
class 0, denoted CZ(X), are the complements of the sets in Z(X).

The symbol 0 stands for the constant function to 0. A basic open neighborhood
of 0 is of the form [F, (−ǫ, ǫ)] = {f ∈ C(X) : f(F ) ⊂ (−ǫ, ǫ)}, where F ∈ [X ]<ω

and ǫ > 0.
Let A and B be collections of subsets of an infinite set.
• Then S1(A,B) denote the following hypothesis:
For each sequence (An : n ∈ N) of elements of A there is a sequence (Bn : n ∈ N)

such that, for each n, Bn ∈ An and {Bn : n ∈ N} is an element of B.
• The symbol Sfin(A,B) denote the following hypothesis:
For each sequence (An : n ∈ N) of elements of A there is a sequence (Bn : n ∈ N)

such that, for each n, Bn ⊂ An is finite, and
⋃

{Bn : n ∈ N} is an element of B.
• Ufin(A,B): For each sequence (An : n ∈ N) of elements of A there is a

sequence (Bn : n ∈ N) such that, for each n, Bn ⊂ An is finite, and {
⋃

Bn : n ∈ N}
is an element of B.

An open cover U of a space X is:
• an ω-cover if X does not belong to U and every finite subset of X is contained

in a member of U. Note that if U is an ω-cover of a set X and X /∈ U, then each
finite subset of X is contained in infinitely many members of U.

• a γ-cover if it is infinite and each x ∈ X belongs to all but finitely many
elements of U. Note that every γ-cover contains a countably γ-cover.

• a γF -shrinkable if it is an γ-cover U of co-zero sets of X and there exists a
γ-cover {F (U) : U ∈ U} of zero-sets of X with F (U) ⊂ U for every U ∈ U.

For a topological space X we denote:

• O—the family of all open covers of X .
• Ω—the family of all open ω-covers of X .
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• Γ—the family of all countable open γ-covers of X .
• ΓF —the family of all countable γF -shrinkable covers of X .
• B—the family of all countable Baire covers of X .
• BΓ—the family of all countable Baire γ-covers of X .
• BΩ—the family of all countable Baire ω-covers of X .
• S1(O,O) denote the Rothberger property.
• Sfin(O,O) denotes the Menger property.
• Ufin(O,Γ) denotes the Hurewicz property.

Let X be a topological space, and x ∈ X . A subset A of X converges to x,
x = limA, if A is infinite, x /∈ A, and for each neighborhood U of x, ArU is finite.

• Ωx = {A ⊆ X : x ∈ ĀrA}.
• Ωω

x = {A ⊆ X : |A| = ℵ0 and x ∈ ĀrA}.
• Γx = {A ⊆ X : x = limA}.
• Γω

x = {A ⊆ X : |A| = ℵ0 and x = limA}.

3. An embedding of sequential hedgehogs in function spaces

Theorem 3.1. [10, Theorem 3.2] The following conditions are equivalent for
a space X:

(1) Sω cannot be embedded into Cp(X).
(2) X has property Sfin(ΓF ,Ω).

Let P be a topological property. Arhangel’skĭı calls X projectively P if every
second countable continuous image of X is P.

By Theorem 3.1 and [8, Theorem 11.1], we have the following result.

Theorem 3.2. The following conditions are equivalent for a space X:

(1) Sω cannot be embedded into Cp(X).
(2) X has property projectively Sfin(Γ,Ω).
(3) Cp(X) has property Sfin(Γω

x ,Ω
ω
x ).

(4) Cp(X) has property Sfin(Γx,Ωx).

Note that, if every finite power of X is projectively Menger, then X is projec-
tively Sfin(Ω,Ω) in [10, Proposition 4.4].

Corollary 3.1. If every finite power of X is projectively Menger, then the
following conditions are equivalent:

(1) Sω cannot be embedded into Cp(X).
(2) X has property projectively Sfin(Ω,Ω).

Corollary 3.2. [10, Proposition 4.12] Every finite power of X is projectively
Menger if, and only if, for any n ∈ N, Sω cannot be embedded into Cp(Xn).

We summarize implications in the following diagram.

X is projectively Sfin(Ω,Ω)
⇓

X is Sfin(ΓF ,Ω)
m
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Sω 6⊂ Cp(X) ⇔ X is projectively Sfin(Γ,Ω)
⇓

X is projectively Menger

Diagram 1.

Lemma 3.1. [3, Lemma 80] Let X = {x} ∪ {xn,m : n,m ∈ N} be a Hausdorff
space such that xn,m → x (m → ∞) for each n ∈ N, and for any ϕ ∈ NN,

x /∈ {xn,m : n ∈ N,m 6 ϕ(n)}. Then Sω can be embedded into X.

Theorem 3.3. The following conditions are equivalent for a space X:

(1) Sω cannot be embedded into B(X).
(2) X has property Sfin(BΓ,BΩ).
(3) X has property S1(BΓ,BΩ).
(4) B(X) has property Sfin(Γx,Ωx).

Proof. (3) ⇒ (1). Let Sω = {0} ∪ {fn,k : n, k ∈ N} ⊆ B(X), where fn,k → 0

(k → ∞). For each n, k ∈ N, we put Un,k = {x ∈ X : |fn,k(x)| < 1
n

}. Each Un,k is
a Baire set in X . Let Un = {Un,k : k ∈ N}. If I = {n ∈ N : X ∈ Un} is infinite,
some sequence {fn,kn

: n ∈ I} converges to 0 uniformly. This is a contradiction,
so without loss of generality, we may assume Un,k 6= X for each n, k ∈ N. We
can easily check that the condition fn,k → 0 (k → ∞) implies that Un is a Baire
γ-cover of X . Then, by (3), there is {Un,kn

: n ∈ N} a ω-cover of X such that

Un,kn
∈ Un for each n ∈ N. Then 0 ∈ {fn,kn

: n ∈ N}, this is a contradiction.
(1) ⇒ (3). Let Un = {Un,k : k ∈ N} be a Baire γ-cover of X for each n ∈ N

and Uϕ = {Un,k : n ∈ N, k 6 ϕ(n)} is not an ω-cover of X for any ϕ ∈ NN. For
each n, k ∈ N, we take a Baire function fn,k : X → [0, 1] such that fn,k(x) = 0
for all x ∈ Un,k and fn,k = 1 for all x ∈ X r Un,k. Then fn,k → 0 (k → ∞).
Let ϕ ∈ N. Since Uϕ is not an ω-cover of X , there is a finite subset F ⊂ X
such that F is not contained in any member of Uϕ. Then we can easily check
{f ∈ B(X) : f(F ) ⊂ (− 1

2 ,
1
2 )} ∩ {fn,k : n ∈ N, k 6 ϕ(n)} = ∅. By Lemma 3.1, Sω

can be embedded into {0} ∪ {fn,m : n,m ∈ N} ⊂ B(X).
(2) ⇔ (3). By Theorem 9 in [11], Sfin(BΓ,BΩ) = S1(BΓ,BΩ).
(3) ⇔ (4). By Theorem 6.1 in [7], S1(BΓ,BΩ) = Sfin(Γx,Ωx). �

By [11, Theorem 6], S1(BΓ,B) = Sfin(BΓ,B). Note also that, if all finite powers
of X have property S1(BΓ,B), then X has property Sfin(BΩ,BΩ) [11, Theorem 20].

Corollary 3.3. If all finite powers of X have property S1(BΓ,B) then the
following conditions are equivalent:

(1) Sω cannot be embedded into B(X).
(2) X has property Sfin(BΩ,BΩ).

Corollary 3.4. Every finite power of X have property S1(BΓ,B) if, and only
if, for any n ∈ N, Sω cannot be embedded into B(Xn).

We summarize implications in the following diagram.



ON EMBEDDING OF F-HEDGEHOGS IN FUNCTION SPACES 13

X is Sfin(BΩ,BΩ)
⇓

Sω 6⊂ B(X) ⇔ X is Sfin(BΓ,BΩ)
⇓

X is S1(BΓ,B)

Diagram 2.

Proposition 3.1. There is a space X such that Sω can be embedded into B(X),
but Sω cannot be embedded into Cp(X).

Proof. Let X be the real line R with the usual topology. By [4, Theorem
2.2], every σ-compact topological space is a member of class Sfin(Ω,Ω). Hence, X
has the property Sfin(Γ,Ω). By Theorem 3.2, Sω cannot be embedded into Cp(X).
Since X has not property S1(Γ,Ω), it has not property S1(BΓ,BΩ). Hence, by
Theorem 3.3, Sω can be embedded into B(X). �

4. An embedding of F-hedgehogs in function spaces

For sets a, b ∈ [N]∞, we write a ⊆∗ b if the set arb is finite. A semifilter [12] is
a set S ⊆ [N]∞ such that, for each set s ∈ S and each set b ∈ [N]∞ with s ⊆∗ b, we
have b ∈ S. Important examples of semifilters include the maximal semifilter [N]∞,
the minimal semifilter cF of all cofinite sets, and every nonprincipal ultrafilter on N.

By filter we mean a semifilter closed under finite intersections.
An infinite set B ⊆ N is said to be a pseudointersection of a family A ⊆ F if

B ⊆∗ A for any A ∈ A. By P -filter we mean a semifilter F closed under countable
pseudointersection, i.e. if A = {An : An ∈ F, n ∈ N} and B is a pseudointersection
of A then B ∈ F.

Definition 4.1. Let F be a filter. A sequence (xn : n ∈ N) of elements of a

topological space X F∗-converges to x ∈ X , written xn
F

∗

→ x, if

(1) for every neighborhood U of x, we have {n ∈ N : xn ∈ U} ∈ F,
(2) for every F ∈ F there is a neighborhood U of x such that

{n ∈ N : xn ∈ U} = F .

For a filter F, SF = {∞} ∪ {(n,m) : n,m ∈ N} be the F-hedgehog (F-fan) of
spininess ω, where each (n,m) is isolated in SF and a basic open neighborhood of
∞ is of the form N(ϕ) = {∞}∪{(n,m) : n ∈ N,m ∈ ϕ(n)} for function ϕ : N → F.

First, we note that the topology of SF can be characterized by the following
conditions:

(a) the points of N × N are isolated,
(b) for every n ∈ N, the sequence ((n,m) : m ∈ N) F

∗-converges to {∞},
(c) if A ⊂ N × N, and for each n ∈ N there is Bn ∈ F such that A ∩ {(n,m) :

m ∈ Bn} = ∅, then {∞} /∈ Ā.

We need the following lemma, similar to Lemma 79 in [3].

Lemma 4.1. Let F ⊆ [N]∞ be a P -filter and let X = {xn,m : n,m ∈ N} ∪ {p}
be a Hausdorff space such that
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(1) all points xn,m and p are distinct,

(2) for every n,m, k ∈ N, xn,m /∈ {xni,j : 1 6 i 6 k, j ∈ N} r {xn,m},
(3) for every n ∈ N, σn = (xn,m : m ∈ N) F∗-converges to p, and
(4) if A ⊂ X r {p}, and for each n ∈ N there is Bn ∈ F such that

A ∩ {xn,m : m ∈ Bn} = ∅, then p /∈ Ā.

Then X contains a subspace homeomorphic to SF.

Proof. For n ∈ N, denote Sn = {xn,m : m ∈ N}. For every n,m, there are
disjoint neighborhoods On,m ∋ qn,m and Nn,m ∋ p. Hence, there exists Pn,m =
{F i

n,m : i ∈ N, F i
n,m ∈ F} such that {p} ∪ {xn,i : n ∈ N, i ∈ F i

n,m} ⊆ Nn,m. Since

F is a P -filter, there is a pseudointersection B ∈ F of {F i
n,m : i, n,m ∈ N}. Since

B ⊆∗ F i
n,m for any i, n,m ∈ N, there is a function ϕ : N → F ∩ B such that for

every n,m, there are at most finitely many k such that Nn,m ∩ Sk + {xk,l : l ∈
ϕ(k) ⊆ B ∩ F l

n,m}. Denote the set of all these k by Kn,m.
Put Z = {p} ∪ {xk,l : l ∈ ϕ(k)}. Put h(p) = {∞} and h(xk,l) = (k, ψk(l))

whenever l ∈ ϕ(k) where ψk : ϕ(k) → N is a monotonic bijection for every k ∈ N.
Then h is an homeomorphism of Z onto SF. We have to check only that the point
of Z r {p} are isolated in Z. Let xn,m ∈ Z and Cn,m = {p} ∪ {xk,l : k ∈ Kn,m, l ∈
ϕ(k)}. Since On,m ∩ Nn,m = ∅, On,m ∩ Z ⊂ Cn,m. By condition (2), all points of
Cn,m other than p are isolated. �

Definition 4.2. Let X be a topological space and F ⊆ [N]∞ be a filter.
• A cover V = (Vn : n ∈ N) is a F∗-γ-cover, if it is infinite, each x ∈ X

{n : x ∈ Vn} ∈ F and each F ∈ F there is K ∈ [X ]<∞ such that {n : K ⊆ Vn} = F .
• A cover {Vn : n ∈ N} is called a refinement of the cover {Un : n ∈ N}, if

Vn ⊆ Un for each n ∈ N. An F∗-γ-cover {Un : n ∈ N} is F∗-γF -shrinkable if there
exists a zero-set F

∗-γ-cover that is a refinement of {Un : n ∈ N}.

For a topological space X and a filter F ⊆ [N]∞ we denote:

• F∗-Γ the family of all countable open F∗-γ-covers of X .
• F

∗-ΓF the family of all countable co-zero F
∗-γ-shrinkable covers of X .

• F∗-Γω
x = {A ⊆ X : |A| = ℵ0 and A

F
∗

→ x}.

Definition 4.3. Let F ⊆ [N]∞ be a semifilter. A space X is F∗-Menger, if for
every sequence (Un : n ∈ N) of open F∗-Γ covers of X , there are finite subfamilies
Vn ⊂ Un such that

⋃

{Vn : n ∈ N} is an open cover of X , i.e., X has property
Ufin(F∗-Γ,O).

Definition 4.4. Let P be a topological property. A space X has property
condensationly P if every second countable one-to-one continuous image of X is P.

Note that if X has the property projectively P then it has the property con-
densationly P.

Proposition 4.1. Let F be a filter and X has a coarser second countable
topology. Then X has the property Sfin(F∗-ΓF ,Ω) if and only if it has the property
condensationly Sfin(F∗-Γ,Ω).
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Proof. The proof is similar to the proof of [8, Theorem 10.2]. �

Theorem 4.1. Let F be a P -filter. Then the following conditions are equivalent
for a space X:

(1) SF cannot be embedded into Cp(X).
(2) X has property Sfin(F∗-ΓF ,Ω).
(3) Cp(X) has property Sfin(F∗-Γω

x ,Ω
ω
x ).

Proof. (1) ⇒ (2). Assume that there is a sequence (Un : n ∈ N) such that, for
each n, Un ∈ F∗-ΓF , and if Wn ∈ [Un]<ω for each n ∈ N then

⋃

{Wn : n ∈ N} /∈ Ω.
Let Vn = U1 ∩ ... ∩ Un for each n ∈ N. Since F is a P -filter, Vn ∈ Fn-Γ∗

F for each
n ∈ N. By Theorem 6 and [5, Corollary 7], Fn is homeomorphic to F for any n ∈ N.
Hence, Vn ∈ F-Γ∗

F for each n ∈ N.
Let Vn = {Vn,m : m ∈ N} and Zn = {Zn,m : m ∈ N} is a zero-set family such

that Zn ∈ F-Γ and Zn,m ⊆ Vn,m for each m ∈ N.
For each n,m ∈ N, we put

fn,m(x) =

{

0, x ∈ Zn,m

n+ 1
m
, x ∈ X r Vn,m.

Consider the set Y = {0} ∪ {fn,m : n,m ∈ N}. By construction, the set Y have
all conditions in Lemma 4.1.

We check the condition (4). Let A ⊂ Y r {0}, and for each n ∈ N there is
Bn ∈ F such that A ∩ {fn,m : m ∈ Bn} = ∅. Consider a pseudointersection S of
{Bn : n ∈ N}. Since F is a P -filter, S ∈ F. There exists a neighborhood W1 of 0

such that |W1 ∩A∩{fn,m : m ∈ N}| < ℵ0 for each n ∈ N. Note that if On ∈ [Vn]<ω

for each n ∈ N then
⋃

{On : n ∈ N} /∈ Ω. Hence there is a neighborhood W2 of 0

such that W2 ∩ W1 ∩ A ∩ {fn,m : m ∈ N} = ∅ for each n ∈ N. Let W = W1 ∩ W2

then W ∩A = ∅ and 0 6∈ Ā.
(2) ⇒ (1). Assume that SF = {0} ∪ {fn,m : n,m ∈ N} ⊂ Cp(X), where fn,m

F∗-converges to 0 (m → ∞). For each n,m ∈ N, we put
Un,m = {x ∈ X : |fn,m(x)| < 1

n
}, Zn,m = {x ∈ X : |fn,m(x)| 6 1

n+1 }.

Each Un,m (resp., Zn,m) is a cozero-set (resp., zero-set) in X with Zn,m ⊂ Un,m.
Let Un = {Un,m : m ∈ N} and Zn = {Zn,m : m ∈ N}. If I = {n ∈ N : X ∈ Un}
is infinite, some sequence {fn,mn

: n ∈ I} converges to 0 uniformly. This is a
contradiction, so without loss of generality, we may assume Un,m 6= X for each
n,m ∈ N. We can easily check that the condition fn,m F-converges to 0 (m → ∞)
implies that Zn ∈ F-Γ∗

F of X . By condition (2), there is a sequence (Wn : n ∈ N)
such that, for each n, Wn ⊂ Zn is finite, and

⋃

{Wn : n ∈ N} is an element of Ω. Let

Wn = {Zn,m1, ..., Zn,mk(n)
} for each n ∈ N. Then 0 ∈ {fn,mi

: n ∈ N, 1 6 i 6 k(n)}.
This is a contradiction.

The proof of implication (2⇔3) is similar to the proof of Theorem 7.2 in [6]. �

Corollary 4.1. Let F be a P -filter and X has a coarser second countable
topology. Then SF cannot be embedded into Cp(X) if and only if X has property
condensationly Sfin(F∗-Γ,Ω).
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Theorem 4.2. The following conditions are equivalent for a space X:

(1) SF cannot be embedded into B(X).
(2) X has property S1(BF∗

−Γ,BΩ).
(3) B(X) has property Sfin(F∗-Γx,Ωx).

Proof. The proof of implication (1 ⇔ 2) is similar to the proof of implication
(1 ⇔ 2) of Theorem 4.1. The proof of implication (2 ⇔ 3) is similar to the proof
of implication (1 ⇔ 2) of [7, Theorem 6.1]. �

Corollary 4.2. Assume that X has property Sfin(BΩ,BΩ) and F is a P -filter.
Then SF cannot be embedded into B(X).

We summarize implications observed in this paper (con. is an abbreviation for
condensationly).

X is Sfin(BΩ,BΩ)
⇓

SF 6⊂ B(X) ⇔ X is Sfin(BF∗
−Γ,BΩ) ⇒ X is Sfin(BF∗

−Γ,B)
⇓

X is con. Sfin(Ω,Ω) ⇒ SF 6⊂ Cp(X) ⇔ X is con. Sfin(F∗-Γ,Ω)
⇓

X is con. F∗-Menger

Diagram 3.

Question 1. Assume that all finite powers of X have property condensationly
F∗-Menger.

a). Does it follow that X satisfies condensationly Sfin(Ω,Ω)?
b). Does it follow that SF cannot be embedded into Cp(Xn) for every n ∈ N?

Question 2. Assume that all finite powers of X have property Sfin(BF∗
−Γ,B).

a). Does it follow that X satisfies Sfin(BΩ,BΩ)?
b). Does it follow that SF cannot be embedded into B(Xn) for every n ∈ N?
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