SOME NEW RESULTS ON ABSOLUTE MATRIX SUMMABILITY OF INFINITE SERIES AND FOURIER SERIES

Hikmet Seyhan Özarslan

Abstract

Two known results dealing with absolute summability of infinite series and trigonometric Fourier series are generalized to the $\left|A, p_{n}, \beta ; \delta\right|_{k}$ summability method.

1. Introduction

Let $\sum a_{n}$ be a given infinite series with partial sums $\left(s_{n}\right)$. Let $A=\left(a_{n v}\right)$ be a normal matrix, i.e., a lower triangular matrix of nonzero diagonal entries. Then A defines the sequence-to-sequence transformation, mapping the sequence $s=\left(s_{n}\right)$ to $A s=\left(A_{n}(s)\right)$, where $A_{n}(s)=\sum_{v=0}^{n} a_{n v} s_{v}, n=0,1, \ldots$ The series $\sum a_{n}$ is said to be summable $\left|A, p_{n}, \beta ; \delta\right|_{k}, k \geqslant 1, \delta \geqslant 0$ and β is a real number, if (see [16])

$$
\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{\beta(\delta k+k-1)}\left|A_{n}(s)-A_{n-1}(s)\right|^{k}<\infty
$$

where $\left(p_{n}\right)$ is a sequence of positive numbers such that

$$
P_{n}=\sum_{v=0}^{n} p_{v} \rightarrow \infty \quad \text { as } \quad n \rightarrow \infty, \quad\left(P_{-k}=p_{-k}=0, \quad k \geqslant 1\right)
$$

If we take $\beta=1, \delta=0$ and $a_{n v}=\frac{p_{v}}{P_{n}}$, then $\left|A, p_{n}, \beta ; \delta\right|_{k}$ summability is the same as $\left|\bar{N}, p_{n}\right|_{k}$ summability method (see [1]). For any sequence $\left(\lambda_{n}\right)$, it should be noted that $\Delta \lambda_{n}=\lambda_{n}-\lambda_{n+1}, \Delta^{0} \lambda_{n}=\lambda_{n}, \Delta^{k} \lambda_{n}=\Delta \Delta^{k-1} \lambda_{n}$ for $k=1,2, \ldots$ (see $\mathbf{9}$) and $\left(t_{n}\right)$ is the n-th $(C, 1)$ mean of the sequence $\left(n a_{n}\right)$, i.e., $t_{n}=\frac{1}{n+1} \sum_{v=1}^{n} v a_{v}$.

Also, if we write $X_{n}=\sum_{v=0}^{n} \frac{p_{v}}{P_{v}}$, then $\left(X_{n}\right)$ is a positive increasing sequence tending to infinity as $n \rightarrow \infty$. A sequence $\left(\lambda_{n}\right)$ is said to be of bounded variation, denoted by $\left(\lambda_{n}\right) \in \mathcal{B} \mathcal{V}$, if $\sum_{n=1}^{\infty}\left|\Delta \lambda_{n}\right|<\infty$.

[^0]
2. Known Result

There are many papers on absolute summability of infinite and Fourier series, some of them are $3 \times \mathbf{1 0}$. Among them, in 3, the following theorem on absolute Riesz summability of the series $\sum a_{n} \lambda_{n}$ has been proved.

TheOrem 2.1. Let $\left(p_{n}\right)$ be a sequence of positive numbers such that

$$
P_{n}=O\left(n p_{n}\right) \quad \text { as } \quad n \rightarrow \infty .
$$

If the conditions

$$
\begin{gather*}
\lambda_{m}=o(1) \quad \text { as } \quad m \rightarrow \infty \tag{2.1}\\
\sum_{n=1}^{m} n X_{n}\left|\Delta^{2} \lambda_{n}\right|=O(1) \quad \text { as } \quad m \rightarrow \infty \tag{2.2}\\
\sum_{n=1}^{m} \frac{p_{n}}{P_{n}} \frac{\left|t_{n}\right|^{k}}{X_{n}^{k-1}}=O\left(X_{m}\right) \quad \text { as } \quad m \rightarrow \infty
\end{gather*}
$$

hold, then the series $\sum a_{n} \lambda_{n}$ is summable $\left|\bar{N}, p_{n}\right|_{k}, k \geqslant 1$.

3. Main Result

We generalize Theorem 2.1 for a general matrix summability method. For some other papers on matrix summability of infinite and Fourier series, we can refer to $11,15,17$.

Before giving the main result, let us introduce some further notations. Given a normal matrix $A=\left(a_{n v}\right)$, two lower semimatrices $\bar{A}=\left(\bar{a}_{n v}\right)$ and $\hat{A}=\left(\hat{a}_{n v}\right)$ as follows:

$$
\begin{gather*}
\bar{a}_{n v}=\sum_{i=v}^{n} a_{n i}, \quad n, v=0,1, \ldots \tag{3.1}\\
\hat{a}_{00}=\bar{a}_{00}=a_{00}, \quad \hat{a}_{n v}=\bar{a}_{n v}-\bar{a}_{n-1, v}, \quad n=1,2, \ldots \tag{3.2}\\
\bar{\Delta} A_{n}(s)=A_{n}(s)-A_{n-1}(s)=\sum_{v=0}^{n} \hat{a}_{n v} a_{v} . \tag{3.3}
\end{gather*}
$$

Theorem 3.1. Let $A=\left(a_{n v}\right)$ be a positive normal matrix such that

$$
\begin{gather*}
\bar{a}_{n 0}=1, n=0,1, \ldots, \tag{3.4}\\
a_{n-1, v} \geqslant a_{n v}, \text { for } n \geqslant v+1, \tag{3.5}\\
a_{n n}=O\left(\frac{p_{n}}{P_{n}}\right), \tag{3.6}\\
\left|\hat{a}_{n, v+1}\right|=O\left(v\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\right) . \tag{3.7}
\end{gather*}
$$

If conditions (2.1), (2.2) and

$$
\begin{equation*}
\sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{\beta(\delta k+k-1)-k} \frac{\left|t_{n}\right|^{k}}{X_{n}^{k-1}}=O\left(X_{m}\right), m \rightarrow \infty \tag{3.8}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{n=v+1}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\beta(\delta k+k-1)-k+1}\left|\Delta_{v} \hat{a}_{n v}\right|=O\left(\left(\frac{P_{v}}{p_{v}}\right)^{\beta(\delta k+k-1)-k}\right), m \rightarrow \infty \tag{3.9}
\end{equation*}
$$

are satisfied, then the series $\sum a_{n} \lambda_{n}$ is summable $\left|A, p_{n}, \beta ; \delta\right|_{k}, k \geqslant 1, \delta \geqslant 0$ and $-\beta(\delta k+k-1)+k>0$.

We need the following lemma to prove Theorem 3.1.
Lemma 3.1. [2] Under the conditions of Theorem 3.1, we have

$$
\begin{gather*}
n X_{n}\left|\Delta \lambda_{n}\right|=O(1) \quad \text { as } \quad n \rightarrow \infty \tag{3.10}\\
\sum_{n=1}^{\infty} X_{n}\left|\Delta \lambda_{n}\right|<\infty \tag{3.11}\\
X_{n}\left|\lambda_{n}\right|=O(1) \quad \text { as } \quad n \rightarrow \infty \tag{3.12}
\end{gather*}
$$

Proof of Theorem 3.1. Let $\left(I_{n}\right)$ denotes A-transform of the series $\sum a_{n} \lambda_{n}$. By (3.3), we obtain $\bar{\Delta} I_{n}=\sum_{v=0}^{n} \hat{a}_{n v} a_{v} \lambda_{v}=\sum_{v=1}^{n} \frac{\hat{a}_{n v} \lambda_{v}}{v} v a_{v}$. Then, applying Abel's transformation, we get

$$
\begin{aligned}
\bar{\Delta} I_{n} & =\sum_{v=1}^{n-1} \Delta_{v}\left(\frac{\hat{a}_{n v} \lambda_{v}}{v}\right) \sum_{r=1}^{v} r a_{r}+\frac{\hat{a}_{n n} \lambda_{n}}{n} \sum_{r=1}^{n} r a_{r} \\
& =\sum_{v=1}^{n-1} \frac{v+1}{v} \Delta_{v}\left(\hat{a}_{n v}\right) \lambda_{v} t_{v}+\sum_{v=1}^{n-1} \frac{v+1}{v} \hat{a}_{n, v+1} \Delta \lambda_{v} t_{v} \\
& +\sum_{v=1}^{n-1} \hat{a}_{n, v+1} \lambda_{v+1} \frac{t_{v}}{v}+\frac{n+1}{n} a_{n n} \lambda_{n} t_{n} \\
& =I_{n, 1}+I_{n, 2}+I_{n, 3}+I_{n, 4}
\end{aligned}
$$

For the proof of Theorem 3.1] we show that

$$
\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{\beta(\delta k+k-1)}\left|I_{n, r}\right|^{k}<\infty \quad \text { for } \quad r=1,2,3,4
$$

First, by using Hölder's inequality with indices k and k^{\prime}, where $k>1$ and $\frac{1}{k}+\frac{1}{k^{\prime}}=1$, we have

$$
\begin{aligned}
\sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\beta(\delta k+k-1)}\left|I_{n, 1}\right|^{k}= & O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\beta(\delta k+k-1)}\left(\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\left|\lambda_{v}\right|^{k}\left|t_{v}\right|^{k}\right) \\
& \times\left(\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\right)^{k-1}
\end{aligned}
$$

By using (3.1), (3.2), (3.4) and (3.5), we get $\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right| \leqslant a_{n n}$. Thus, by using (3.6), (3.9), (3.12), we have

$$
\begin{aligned}
& \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\beta(\delta k+k-1)}\left|I_{n, 1}\right|^{k}=O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\beta(\delta k+k-1)-k+1}\left(\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\left|\lambda_{v}\right|^{k}\left|t_{v}\right|^{k}\right) \\
&=O(1) \sum_{v=1}^{m}\left|\lambda_{v}\right|\left|\lambda_{v}\right|^{k-1}\left|t_{v}\right|^{k} \sum_{n=v+1}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\beta(\delta k+k-1)-k+1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right| \\
&=O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{\beta(\delta k+k-1)-k}\left|\lambda_{v}\right| \frac{\left|t_{v}\right|^{k}}{X_{v}^{k-1}}
\end{aligned}
$$

By applying Abel's transformation and using conditions (3.8), (3.11) and (3.12), we have

$$
\begin{aligned}
\sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\beta(\delta k+k-1)}\left|I_{n, 1}\right|^{k}= & O(1) \sum_{v=1}^{m-1} \Delta\left|\lambda_{v}\right| \sum_{r=1}^{v}\left(\frac{P_{r}}{p_{r}}\right)^{\beta(\delta k+k-1)-k} \frac{\left|t_{r}\right|^{k}}{X_{r}^{k-1}} \\
& +O(1)\left|\lambda_{m}\right| \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{\beta(\delta k+k-1)-k} \frac{\left|t_{v}\right|^{k}}{X_{v}^{k-1}} \\
= & O(1) \sum_{v=1}^{m-1}\left|\Delta \lambda_{v}\right| X_{v}+O(1)\left|\lambda_{m}\right| X_{m} \\
= & O(1) \text { as } m \rightarrow \infty
\end{aligned}
$$

Now, using Hölder's inequality and conditions (3.7), (3.6), (3.9), (3.10), we have

$$
\begin{aligned}
& \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\beta(\delta k+k-1)}\left|I_{n, 2}\right|^{k}=O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\beta(\delta k+k-1)}\left(\sum_{v=1}^{n-1} v\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\left|\Delta \lambda_{v}\right|\left|t_{v}\right|\right)^{k} \\
&= O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\beta(\delta k+k-1)}\left(\sum_{v=1}^{n-1}\left(v\left|\Delta \lambda_{v}\right|\right)^{k}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\left|t_{v}\right|^{k}\right) \\
& \times\left(\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\right)^{k-1} \\
&= O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\beta(\delta k+k-1)-k+1} \\
& \times\left(\sum_{v=1}^{n-1}\left(v\left|\Delta \lambda_{v}\right|\right)^{k}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\left|t_{v}\right|^{k}\right) \\
&= O(1) \sum_{v=1}^{m}\left(v\left|\Delta \lambda_{v}\right|\right)^{k-1}\left(v\left|\Delta \lambda_{v}\right|\right)\left|t_{v}\right|^{k} \\
& \times \sum_{n=v+1}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\beta(\delta k+k-1)-k+1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right| \\
&= O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{\beta(\delta k+k-1)-k} v\left|\Delta \lambda_{v}\right| \frac{\left.t_{v}\right|^{k}}{X_{v}^{k-1}}
\end{aligned}
$$

Then, we get

$$
\begin{aligned}
\sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\beta(\delta k+k-1)}\left|I_{n, 2}\right|^{k}= & O(1) \sum_{v=1}^{m-1} \Delta\left(v\left|\Delta \lambda_{v}\right|\right) \sum_{r=1}^{v}\left(\frac{P_{r}}{p_{r}}\right)^{\beta(\delta k+k-1)-k} \frac{\left|t_{r}\right|^{k}}{X_{r}^{k-1}} \\
& +O(1) m\left|\Delta \lambda_{m}\right| \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{\beta(\delta k+k-1)-k} \frac{\left|t_{v}\right|^{k}}{X_{v}^{k-1}} \\
= & O(1) \sum_{v=1}^{m-1} \Delta\left(v\left|\Delta \lambda_{v}\right|\right) X_{v}+O(1) m\left|\Delta \lambda_{m}\right| X_{m} \\
= & O(1) \sum_{v=1}^{m-1} v\left|\Delta^{2} \lambda_{v}\right| X_{v}+O(1) \sum_{v=1}^{m-1}\left|\Delta \lambda_{v}\right| X_{v} \\
& +O(1) m\left|\Delta \lambda_{m}\right| X_{m}=O(1) \quad \text { as } \quad m \rightarrow \infty
\end{aligned}
$$

by applying Abel's transformation and using conditions (3.8), (2.2), (3.11), (3.10). For $r=3$, again using Hölder's inequality and conditions (3.7), (3.6), (3.9), (3.12), we have

$$
\begin{aligned}
& \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\beta(\delta k+k-1)}\left|I_{n, 3}\right|^{k}=O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\beta(\delta k+k-1)}\left(\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\left|\lambda_{v+1}\right|^{k}\left|t_{v}\right|^{k}\right) \\
& \times\left(\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\right)^{k-1} \\
&= O(1) \sum_{n=2}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\beta(\delta k+k-1)-k+1}\left(\sum_{v=1}^{n-1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right|\left|\lambda_{v+1}\right|^{k}\left|t_{v}\right|^{k}\right) \\
&= O(1) \sum_{v=1}^{m}\left|\lambda_{v+1}\right|^{k-1}\left|\lambda_{v+1}\right|\left|t_{v}\right|^{k} \\
& \times \sum_{n=v+1}^{m+1}\left(\frac{P_{n}}{p_{n}}\right)^{\beta(\delta k+k-1)-k+1}\left|\Delta_{v}\left(\hat{a}_{n v}\right)\right| \\
&= O(1) \sum_{v=1}^{m}\left(\frac{P_{v}}{p_{v}}\right)^{\beta(\delta k+k-1)-k}\left|\lambda_{v+1}\right| \frac{\left|t_{v}\right|^{k}}{X_{v}^{k-1}}=O(1), \quad m \rightarrow \infty
\end{aligned}
$$

as in $I_{n, 1}$. Finally, we get

$$
\begin{aligned}
\sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{\beta(\delta k+k-1)}\left|I_{n, 4}\right|^{k} & =O(1) \sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{\beta(\delta k+k-1)-k}\left|\lambda_{n}\right|^{k-1}\left|\lambda_{n}\right|\left|t_{n}\right|^{k} \\
& =O(1) \sum_{n=1}^{m}\left(\frac{P_{n}}{p_{n}}\right)^{\beta(\delta k+k-1)-k}\left|\lambda_{n}\right| \frac{\left|t_{n}\right|^{k}}{X_{n}^{k-1}} \\
& =O(1) \quad \text { as } \quad m \rightarrow \infty
\end{aligned}
$$

as in $I_{n, 1}$ and thus the proof is completed.

If we take $\beta=1, \delta=0$ and $a_{n v}=\frac{p_{v}}{P_{n}}$ in Theorem [3.1, then we get Theorem 2.1.

4. A result for Fourier series

Let f be a periodic function with period 2π and Lebesgue integrable over $(-\pi, \pi)$. The trigonometric Fourier series of f is defined as

$$
f(x) \sim \frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)=\sum_{n=0}^{\infty} A_{n}(x)
$$

Write

$$
\phi(t)=\frac{1}{2}\{f(x+t)+f(x-t)\} \quad \text { and } \quad \phi_{1}(t)=\frac{1}{t} \int_{0}^{t} \phi(u) d u
$$

If $\phi_{1}(t) \in \mathcal{B} \mathcal{V}(0, \pi)$, then $t_{n}(x)=O(1)$, where $t_{n}(x)$ is the n-th $(C, 1)$ mean of the sequence $\left(n A_{n}(x)\right)$ (see [8]). By using this fact, in [3], Bor has proved the following theorem.

THEOREM 4.1. If $\phi_{1}(t) \in \mathcal{B} \mathcal{V}(0, \pi)$, and the sequences $\left(p_{n}\right)$, $\left(\lambda_{n}\right)$ and $\left(X_{n}\right)$ satisfy the conditions of Theorem [2.1, then the series $\sum A_{n}(x) \lambda_{n}$ is summable $\left|\bar{N}, p_{n}\right|_{k}, k \geqslant 1$.

Theorem4.1]is generalized to the $\left|A, p_{n}, \beta ; \delta\right|_{k}$ summability of the trigonometric Fourier series as in the following form.

Theorem 4.2. Let $\phi_{1}(t) \in \mathcal{B} \mathcal{V}(0, \pi)$. If all conditions of Theorem 3.1 are satisfied, then the series $\sum A_{n}(x) \lambda_{n}$ is summable $\left|A, p_{n}, \beta ; \delta\right|_{k}, k \geqslant 1, \delta \geqslant 0$ and $-\beta(\delta k+k-1)+k>0$.

If we take $\beta=1, \delta=0$ and $a_{n v}=\frac{p_{v}}{P_{n}}$ in Theorem 4.2, then we get Theorem 4.1.

References

1. H. Bor, On two summability methods, Math. Proc. Cambridge Philos. Soc. 97(1) (1985), 147-149.
2. \qquad , On the absolute Riesz summability factors, Rocky Mountain J. Math. 24(4) (1994), 1263-1271.
3. \qquad , Some new results on absolute Riesz summability of infinite series and Fourier series, Positivity 20(3) (2016), 599-605.
4. \qquad , Certain new factor theorems for infinite series and trigonometric Fourier series, Quaest. Math. 43(4) (2020), 441-448.
5. \qquad , On an application of power increasing sequences, Trans. A. Razmadze Math. Inst. 174(3) (2020), 265-269.
6. \qquad , A new note on factored infinite series and trigonometric Fourier series, C. R. Math. Acad. Sci. Paris 359 (2021), 323-328.
7. \qquad , Factored infinite series and Fourier series involving almost increasing sequences, Bull. Sci. Math. 169 (2021) Paper No. 102990, 8 pp.
8. K. K. Chen, Functions of bounded variation and the Cesàro means of Fourier series, Acad. Sinica Sci. Record, 1 (1945), 283-289.
9. G. H. Hardy, Divergent Series, Oxford University Press, Oxford, 1949.
10. B. Kartal, Generalized absolute Riesz summability of infinite series and Fourier series, Inter. J. Anal. Appl. 18 (6) (2020), 957-964
11. H. S. Özarslan, A new factor theorem for absolute matrix summability, Quaest. Math. 42 (6) (2019), 803-809.
12. \qquad , Local properties of generalized absolute matrix summability of factored Fourier series, Southeast Asian Bull. Math. 43 (2) (2019), 263-272.
13. \qquad , On the localization of factored Fourier series, J. Comput. Anal. Appl. 29 (2) (2021), 344-354.
14. , A study on local properties of Fourier series, Bol. Soc. Paran. Mat. (3) 39 (1) (2021), 201-211.
15. \qquad , Generalized absolute matrix summability of infinite series and Fourier series, Indian J. Pure Appl. Math. 53(4) (2022), 1083-1089.
16. H. S. Özarslan, A. Karakaş, A new study on absolute summability factors of infinite series, Maejo Int. J. Sci. Technol. 13 (3) (2019), 257-265.
17. H.S. Özarslan, B. Kartal, Absolute matrix summability via almost increasing sequence, Quaest. Math. 43 (10) (2020), 1477-1485.

Department of Mathematics
(Received 2208 2022)
Erciyes University
Kayseri
Turkey
seyhan@erciyes.edu.tr

[^0]: 2020 Mathematics Subject Classification: Primary 40F05; Secondary 26D15, 40D15, 40G99, 42A24.

 Key words and phrases: Riesz mean, absolute matrix summability, Fourier series, infinite series.

 Communicated by Stevan Pilipović.

