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SOME NEW RESULTS ON

ABSOLUTE MATRIX SUMMABILITY OF

INFINITE SERIES AND FOURIER SERIES

Hikmet Seyhan Özarslan

Abstract. Two known results dealing with absolute summability of infinite
series and trigonometric Fourier series are generalized to the |A, pn, β; δ|k
summability method.

1. Introduction

Let
∑

an be a given infinite series with partial sums (sn). Let A = (anv) be
a normal matrix, i.e., a lower triangular matrix of nonzero diagonal entries. Then
A defines the sequence-to-sequence transformation, mapping the sequence s = (sn)
to As = (An(s)), where An(s) =

∑n

v=0 anvsv, n = 0, 1, . . . The series
∑

an is said
to be summable |A, pn, β; δ|k, k > 1, δ > 0 and β is a real number, if (see [16])

∞
∑

n=1

(Pn

pn

)β(δk+k−1)
|An(s) − An−1(s)|k < ∞,

where (pn) is a sequence of positive numbers such that

Pn =

n
∑

v=0

pv → ∞ as n → ∞, (P−k = p−k = 0, k > 1).

If we take β = 1, δ = 0 and anv = pv

Pn

, then |A, pn, β; δ|k summability is the same as

|N̄ , pn|k summability method (see [1]). For any sequence (λn), it should be noted
that ∆λn = λn − λn+1, ∆0λn = λn, ∆kλn = ∆∆k−1λn for k = 1, 2, . . . (see [9])
and (tn) is the n-th (C, 1) mean of the sequence (nan), i.e., tn = 1

n+1

∑n

v=1 vav.

Also, if we write Xn =
∑n

v=0
pv

Pv

, then (Xn) is a positive increasing sequence

tending to infinity as n → ∞. A sequence (λn) is said to be of bounded variation,
denoted by (λn) ∈ BV, if

∑

∞

n=1 |∆λn| < ∞.
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2. Known Result

There are many papers on absolute summability of infinite and Fourier series,
some of them are [3–7,10]. Among them, in [3], the following theorem on absolute
Riesz summability of the series

∑

anλn has been proved.

Theorem 2.1. Let (pn) be a sequence of positive numbers such that

Pn = O(npn) as n → ∞.

If the conditions

λm = o(1) as m → ∞,(2.1)
m

∑

n=1

nXn|∆2λn| = O(1) as m → ∞,(2.2)

m
∑

n=1

pn

Pn

|tn|k

Xk−1
n

= O(Xm) as m → ∞

hold, then the series
∑

anλn is summable |N̄, pn|k, k > 1.

3. Main Result

We generalize Theorem 2.1 for a general matrix summability method. For
some other papers on matrix summability of infinite and Fourier series, we can
refer to [11–15,17].

Before giving the main result, let us introduce some further notations. Given
a normal matrix A = (anv), two lower semimatrices Ā = (ānv) and Â = (ânv) as
follows:

ānv =

n
∑

i=v

ani, n, v = 0, 1, . . .(3.1)

â00 = ā00 = a00, ânv = ānv − ān−1,v, n = 1, 2, . . .(3.2)

∆̄An(s) = An(s) − An−1(s) =

n
∑

v=0

ânvav.(3.3)

Theorem 3.1. Let A = (anv) be a positive normal matrix such that

an0 = 1, n = 0, 1, . . . ,(3.4)

an−1,v > anv, for n > v + 1,(3.5)

ann = O
( pn

Pn

)

,(3.6)

|ân,v+1| = O(v|∆v(ânv)|).(3.7)

If conditions (2.1), (2.2) and

m
∑

n=1

(Pn

pn

)β(δk+k−1)−k |tn|k

Xk−1
n

= O(Xm), m → ∞(3.8)
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m+1
∑

n=v+1

(Pn

pn

)β(δk+k−1)−k+1
|∆v ânv| = O

(

(Pv

pv

)β(δk+k−1)−k
)

, m → ∞(3.9)

are satisfied, then the series
∑

anλn is summable |A, pn, β; δ|k, k > 1, δ > 0 and

−β(δk + k − 1) + k > 0.

We need the following lemma to prove Theorem 3.1.

Lemma 3.1. [2] Under the conditions of Theorem 3.1, we have

nXn|∆λn| = O(1) as n → ∞,(3.10)
∞

∑

n=1

Xn|∆λn| < ∞,(3.11)

Xn|λn| = O(1) as n → ∞.(3.12)

Proof of Theorem 3.1. Let (In) denotes A-transform of the series
∑

anλn.

By (3.3), we obtain ∆̄In =
∑n

v=0 ânvavλv =
∑n

v=1
ânvλv

v
vav. Then, applying

Abel’s transformation, we get

∆̄In =

n−1
∑

v=1

∆v

( ânvλv

v

)

v
∑

r=1

rar +
ânnλn

n

n
∑

r=1

rar

=

n−1
∑

v=1

v + 1

v
∆v(ânv)λvtv +

n−1
∑

v=1

v + 1

v
ân,v+1∆λvtv

+

n−1
∑

v=1

ân,v+1λv+1
tv

v
+

n + 1

n
annλntn

= In,1 + In,2 + In,3 + In,4.

For the proof of Theorem 3.1, we show that

∞
∑

n=1

(Pn

pn

)β(δk+k−1)
|In,r |k < ∞ for r = 1, 2, 3, 4.

First, by using Hölder’s inequality with indices k and k′, where k > 1 and 1
k

+ 1
k′

= 1,
we have

m+1
∑

n=2

(Pn

pn

)β(δk+k−1)
|In,1|k = O(1)

m+1
∑

n=2

(Pn

pn

)β(δk+k−1)
( n−1

∑

v=1

|∆v(ânv)||λv |k|t
v
|k

)

×

( n−1
∑

v=1

|∆v(ânv)|

)k−1

.

By using (3.1), (3.2), (3.4) and (3.5), we get
∑n−1

v=1 |∆v(ânv)| 6 ann. Thus, by using
(3.6), (3.9), (3.12), we have
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m+1
∑

n=2

(Pn

pn

)β(δk+k−1)
|In,1|k = O(1)

m+1
∑

n=2

(Pn

pn

)β(δk+k−1)−k+1
( n−1

∑

v=1

|∆v(ânv)||λv|k|t
v
|k

)

= O(1)

m
∑

v=1

|λv||λv|k−1|tv|k
m+1
∑

n=v+1

(Pn

pn

)β(δk+k−1)−k+1
|∆v(ânv)|

= O(1)

m
∑

v=1

(Pv

pv

)β(δk+k−1)−k

|λv|
|tv|k

Xk−1
v

.

By applying Abel’s transformation and using conditions (3.8), (3.11) and (3.12),
we have

m+1
∑

n=2

(Pn

pn

)β(δk+k−1)
|In,1|k = O(1)

m−1
∑

v=1

∆|λv |

v
∑

r=1

(Pr

pr

)β(δk+k−1)−k |tr|k

Xk−1
r

+ O(1)|λm|

m
∑

v=1

(Pv

pv

)β(δk+k−1)−k |tv|k

Xk−1
v

= O(1)

m−1
∑

v=1

|∆λv |Xv + O(1)|λm|Xm

= O(1) as m → ∞.

Now, using Hölder’s inequality and conditions (3.7), (3.6), (3.9), (3.10), we have

m+1
∑

n=2

(Pn

pn

)β(δk+k−1)
|In,2|k = O(1)

m+1
∑

n=2

(Pn

pn

)β(δk+k−1)
( n−1

∑

v=1

v|∆v(ânv)||∆λv ||tv|

)k

= O(1)

m+1
∑

n=2

(Pn

pn

)β(δk+k−1)
( n−1

∑

v=1

(v|∆λv |)k|∆v(ânv)||tv|k
)

×

( n−1
∑

v=1

|∆v(ânv)|

)k−1

= O(1)

m+1
∑

n=2

(Pn

pn

)β(δk+k−1)−k+1

×

( n−1
∑

v=1

(v|∆λv|)k|∆v(ânv)||tv|k
)

= O(1)
m

∑

v=1

(v|∆λv |)k−1(v|∆λv |)|tv|k

×

m+1
∑

n=v+1

(Pn

pn

)β(δk+k−1)−k+1
|∆v(ânv)|

= O(1)

m
∑

v=1

(Pv

pv

)β(δk+k−1)−k

v|∆λv|
|tv|k

Xk−1
v

.
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Then, we get

m+1
∑

n=2

(Pn

pn

)β(δk+k−1)
|In,2|k = O(1)

m−1
∑

v=1

∆(v|∆λv |)

v
∑

r=1

(Pr

pr

)β(δk+k−1)−k |tr|k

Xk−1
r

+ O(1)m|∆λm|

m
∑

v=1

(Pv

pv

)β(δk+k−1)−k |tv|k

Xk−1
v

= O(1)

m−1
∑

v=1

∆(v|∆λv |)Xv + O(1)m|∆λm|Xm

= O(1)

m−1
∑

v=1

v|∆2λv|Xv + O(1)

m−1
∑

v=1

|∆λv|Xv

+ O(1)m|∆λm|Xm = O(1) as m → ∞

by applying Abel’s transformation and using conditions (3.8), (2.2), (3.11), (3.10).
For r = 3, again using Hölder’s inequality and conditions (3.7), (3.6), (3.9), (3.12),
we have

m+1
∑

n=2

(Pn

pn

)β(δk+k−1)
|In,3|k = O(1)

m+1
∑

n=2

(Pn

pn

)β(δk+k−1)
( n−1

∑

v=1

|∆v(ânv)||λv+1|k|tv|k
)

×

( n−1
∑

v=1

|∆v(ânv)|

)k−1

= O(1)

m+1
∑

n=2

(Pn

pn

)β(δk+k−1)−k+1
( n−1

∑

v=1

|∆v(ânv)||λv+1|k|tv|k
)

= O(1)
m

∑

v=1

|λv+1|k−1|λv+1||tv|k

×
m+1
∑

n=v+1

(Pn

pn

)β(δk+k−1)−k+1
|∆v(ânv)|

= O(1)

m
∑

v=1

(Pv

pv

)β(δk+k−1)−k

|λv+1|
|tv|k

Xk−1
v

= O(1), m → ∞

as in In,1. Finally, we get

m
∑

n=1

(Pn

pn

)β(δk+k−1)
|In,4|k = O(1)

m
∑

n=1

(Pn

pn

)β(δk+k−1)−k

|λn|k−1|λn||tn|k

= O(1)

m
∑

n=1

(Pn

pn

)β(δk+k−1)−k

|λn|
|tn|k

Xk−1
n

= O(1) as m → ∞,

as in In,1 and thus the proof is completed. �
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If we take β = 1, δ = 0 and anv = pv

Pn

in Theorem 3.1, then we get Theorem
2.1.

4. A result for Fourier series

Let f be a periodic function with period 2π and Lebesgue integrable over
(−π, π). The trigonometric Fourier series of f is defined as

f(x) ∼
1

2
a0 +

∞
∑

n=1

(an cos nx + bn sin nx) =

∞
∑

n=0

An(x).

Write

φ(t) =
1

2
{f(x + t) + f(x − t)} and φ1(t) =

1

t

∫ t

0
φ(u) du.

If φ1(t) ∈ BV(0, π), then tn(x) = O(1), where tn(x) is the n-th (C, 1) mean of the
sequence (nAn(x)) (see [8]). By using this fact, in [3], Bor has proved the following
theorem.

Theorem 4.1. If φ1(t) ∈ BV(0, π), and the sequences (pn), (λn) and (Xn)
satisfy the conditions of Theorem 2.1, then the series

∑

An(x)λn is summable
∣

∣N̄, pn

∣

∣

k
, k > 1.

Theorem 4.1 is generalized to the |A, pn, β; δ|k summability of the trigonometric
Fourier series as in the following form.

Theorem 4.2. Let φ1(t) ∈ BV(0, π). If all conditions of Theorem 3.1 are

satisfied, then the series
∑

An(x)λn is summable |A, pn, β; δ|k, k > 1, δ > 0 and

−β(δk + k − 1) + k > 0.

If we take β = 1, δ = 0 and anv = pv

Pn

in Theorem 4.2, then we get Theorem
4.1.
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