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CENTRAL AUTOMORPHISMS OF ZAPPA-SZEP
PRODUCTS OF TWO CYCLIC GROUPS

Vipul Kakkar and Ratan Lal

ABSTRACT. The central automorphism group of the Zappa—Szép product of
two cyclic groups of orders m and p? is calculated, where p is a prime.

1. Introduction

Let Aut(G) be the group of automorphisms of a group G. Then, 6 € Aut(G)
is called a central automorphism of G if g7'6(g) € Z(G) for all g € G, where
Z(G) denotes the center of the group G. In fact, the set Aut.(G) of all cen-
tral automorphisms of the group G is a normal subgroup of Aut(G). Apparently,
Aut.(G) = Caug(e) (Inn(G))(the centralizer of Inn(G) in the group Aut(G)), where
Inn(G) denotes the group of inner automorphisms of the group G. Thus, central au-
tomorphisms play an important role in the investigation of the group Aut(G). The
study of central automorphisms of a group has been an interest to the algebraists
(see [2,3)/5H8,11]).

Zappa [15] was the first to study the Zappa—Szép product of two groups which
was also studied by J. Szép in a series of papers. The Zappa—Szép product is a
natural generalization of the semidirect product of two groups. Let H and K be
two subgroups of a group G. Then, G is called the internal Zappa—Szép product of
H and K if G=HK and HN K = {1}. If G is the internal Zappa—Szép product
of H and K, then kh = o(k,h)7(k, h), where o(k,h) € H and 7(k,h) € K. This
determines the maps 0: KxH — H and 7: K x H — K defined by o(k, h) = oy (h)
and 7(k,h) = (k) for all h € H and k € K respectively. These maps are called
the matched pair of groups and satisfy the following conditions (see [4])

(C1) o1(h) = h and 71(k) = k, (C4) i (KE") =75, (1) (K)TH(E"),
(C2) ok(1) =1=7n(1), (C5) ax(hh') = op(h)om, (k) (R'),
(C3) oww (h) = ok(ow(h)), (C6) Thn (k) = 7o (Ta(K),

for all h,h' € H and k, k' € K.
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Now, let H and K be two groups, 0: K x H - H and 7: K x H — K be two
maps which satisfy the above conditions. Then, the set H x K with the binary
operation defined by (h,k)(h', k") = (hor(h'), 7 (k)k') forms a group called the
external Zappa—Szép product of H and K. The internal Zappa—Szép product is
isomorphic to the external Zappa—Szép product (see [4, Proposition 2.4]). We will
identify the external Zappa—Szép product with the internal Zappa—Szép product.
The Zappa—Szép product of the groups H and K is denoted by H 1 K.

In this paper, we compute the central automorphism groups of groups which
are the Zappa-Szép products of two cyclic groups of orders m and p?, where p is a
prime. The Zappa—Szép products of semigroups is a source of new and interesting
examples of C*-algebras (see |1,[14]). One can construct new examples of finite
group C'*-algebras using the results mentioned in this paper. The terminology used
in this paper is the same as in [9] and [10]. Throughout the paper, Z,, denotes the
cyclic group of order n. Let U and V be groups. Then Hom(U, V') and Epi(U, V)
denote the groups of all group homomorphisms and onto group homomorphisms
from U to V, respectively. If U =V, then we simply write Epi(U).

2. Structure of the central automorphism group

Let G be the Zappa—Szép product of two groups H and K. Let U,V and W
be any groups. Then Map(U, V') denotes the set of all maps from the group U to
the group V. If ¢,¢ € Map(U, V) and n € Map(V, W), then ¢ + ¢ € Map(U, V) is
defined by (6 + 1)(u) = ¢(u)ih(w), 76 € Map(U, W) is defined by né(u) = n(6(u)),
o4(¢) € Map(U, V) is defined by (04 (1))(u) = 04w) (¥ (u)) and 74 (1) € Map(U, V)
is defined by (74(1))(u) = Tpw)(¥(u)), for all w € U. Let ker(o) = {k € K |
or(h) = h forall h € H} and Fix(c) = {h € H | ox(h) = h, forall k € K}.
Similarly, we define the sets ker(7) and Fix(7). In this section, we study the
structure of the central automorphism group of G.

PrOPOSITION 2.1 ( [10, Corollary 2.1]). Let G be the Zappa—Szép product of
two abelian groups H and K. Then Z(G) = H* x K*, where H* = Fix(o)Nker(7)N
Z(H) and K* = Fix(7) Nker(c) N Z(K).

Let A, be the set of all matrices of the form (f; §)7 where « € Epi(H), g €
Hom (K, H*),v € Hom(H, K*) and § € Epi(K) satisfy the following conditions,
(A1) h_ a(h) € H*,
(A2) k~1o(k) € K,
(A3) B(k)os() (o a(h)) = alow(h)B(ra(k)),
(A4) 7a(n)(6(k))y(h) = y(ok(h))d(Tn(K),
(A5) for any h'E' € @G, there exists a unique h € H and k € K such that
' = a(h)B(k) and k' = ~(h)o(k).
for all h,h' € H and k, k" € K. Then, the set A. forms a group with the binary
operation defined as follows (see [9} p. 98]),
@D DAt B
vod)\y 6] \Ya+d'y B+
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THEOREM 2.1. Let G be the Zappa—Szép product of two abelian groups H and
K. Let A. be as above. Then there is an isomorphism of groups between Aut.(G)
and A. given by 0 < (f; g), where O(h) = a(h)y(h) and 0(k) = B(k)o(k), for all
he Handk € K.

PROOF. The proof follows along the lines of the proof of [10, Theorem 2.2]. O
We identify the central automorphisms of G with the corresponding matrices

in A.. Note that, if h='a(h) € H*, then 7o) (k) = 7h(k), for all h € H and k € K.
Also, if k710(k) € K*, then o5,y (h) = oy (h), for all h € H and k € K. Let

P ={a € Aut.(H) | ox(a(h)) = a(ox(h)),h ta(h) € H* Y h € H,k € K},
Q= {8 e Hom(K,H") | B(k) = B(7n(k)) V h € H,k € K},
R ={y € Hom(H,K") | v(or(h)) =v(h)Vh € Hk € K},

S = {5 € Auto(K) | n(5(k)) = 8(ra(k)), k~16(k) € K*V h e H k € K}

be subsets of the group Aut.(G). Then one can easily check that P, @, R and S
are all subgroups of the group Aut.(G). Let

4={( D1acrr 5={( 1sea)
e={(0 Yirer) p={(} Y1ses)

be the corresponding subsets of A., where 0 is the trivial group homomorphism
and 1 is the identity group automorphism. Then one can easily check that A, B,
C and D are subgroups of A.. Note that A and D normalize B and C.

THEOREM 2.2. [10, Theorem 2.3] Let G be the Zappa—Szép product of two

groups H and K. Let A, B,C and D be defined as above. Then, if 1 — 8~ € P, for
all maps 8 and v, then ABCD = A. and Aut.(G) ~ ABCD.

3. Auto(Zg < Znm)

In [12], Yacoub classified the groups which are Zappa—Szép products of cyclic
groups of order 4 and order m. He listed them as (see |12 Conclusion])

Li={(a,b|la™=1=0b*ab=0ba",r* =1 (mod m)),
Ly = {a,b| a™ =1 =10b" ab = ba®",ab = ba®),
where in Lo, m is even. Note that, the group L; may be isomorphic to the group
Lo depending on the values of m,r and t (see [12, Theorem 5]). Clearly, Ly is a
semidirect product. Throughout this section G will denote the group Lo and we
will be only concerned about groups Lo which are Zappa—Szép products but not a
semidirect product. Let H = (b), K = (a) and the mutual actions of H and K be
defined by c,(b) = b3, 75(a) = a®**! along with ¢,2(b) = b and 73(a?) = a?®, where
t and s are the integers satisfying the conditions
(G1) 252 =2 (mod m), (G3) 2(t+1)(s—1)=0 (mod m),
(G2) 4t(s+1)=0 (mod m), (G4) ged (s,m/2) =1.
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PROPOSITION 3.1. If G is the group defined above, then Z(G) = ker(7) Fix(7),

where
= {1 g2
wo-{f oot
{al 11=0 (mod ﬁ)} ifs#1 (mod ).
PrOOF. Forall 0 <¢ <3 and 0 <! < m—1, we have
- {y T
and using (C6), and |9, Lemma 3.1],
al, ifi=0

a2tH1+1=1)s
a2t+2ts+

7(b')(d')

Now, one can easily observe that ker(o)

2
ker(1) = {{1’b b

{1},
. (a?),
Fix(r) = {{al |1=0 (mod

and

and K are cyclic groups, Z(H)
K*

a4t+1+2ts+(l—1)s
b

) |
Clearly, Fix(o) Nker(r) = ker(r) and Fix(7) N ker(o) = Fix(7).
= H and Z(K)
= Fix(7). Hence, the result follows from Proposition

if i =1 and [ is odd
if i =2 and [ is odd
if i =3 and [ is odd
if i=1,3 and [ is even

if 1 =2 and [ is even.

= {a! |l is even} = (a?), Fix(o) = {1,b%},
if 2t(s + 1)
if 2t(s +1) £ 0 (mod m),

=0 (mod m)

if s=1 (mod %)
if s Z1 (mod %).
Since both H
= K. Thus, H* = ker(r) and
O

PROPOSITION 3.2. Let G be the group defined as above. Then

(i) A~ {ZQ, if 2t(s+1) =0 (mod m)
{1}, if2t(s+1)#£0 (mod m),
i) B~ {Zg, if2t(s +1) = 0 (mod m)
{1}, if2t(s+1) Z0 (mod m),

(i) C ~ Zy.

PROOF. (i) Let « € P. Then o € Aut.(H). Hence, by Proposition (i)

holds.
(ii) Let 8 € Q. Then Im()

< {1,b?}. Now, one can easily observe that

B(k) = B(mn(k)) holds for all h € H and k € K. Hence, by Proposition (i)

holds.
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(iii) Let v € R be defined by ~(b) = a*, where 0 < A < m — 1. Then using,
v(b) = v(o4(b)), we get a* = ) (b)) = 7(b*) = a®. Thus 2\ = 0
(mod m) which implies that A = 0 (mod %). Therefore, A € {0,%}. Hence,

C ~ (y) = Z. O

LEMMA 3.1. Leta € P, S €Q,y€ Rand d € S. Then

(i)aB=p=p00, ()ya=~v=7dy, (iii)By=0=~p.

PROOF. Let the maps o € P, 3 € Q, vy € R and § € S be defined as a(b) = b°,
B(a) = b, v(b) = a* and §(a) = a”, where i € {1,3}, j € {0,2}, A € {0,%} and
r € U(m). Then for all h € H and k € K, we have

(i) aB(a) = a(B(a)) = a(b?) = b9 = b = B(a). Thus o = B. Also,
Bé(a) = B(6(a)) = B(a") = b = b/, as r is odd. Therefore, 35 = f3.
(ii) ya(b) = y(b') = a** = a* = v(b). Thus ya = 7. Now, dv(b) = 6(a*) =

a™ = a*, as r is odd. Therefore, 5y = .

(iii) Bv(b) = B(a*) = a’* = 1. Thus By = 0. Now, v8(a) = y(¥) = v/* = 1.
Hence, v3 = 0. O

THEOREM 3.1. Let A, B,C and D be defined as above. Then Aut.(G) ~ A x
BxCxD.

PrOOF. By Lemma (iii), we get 1 — By = 1 € P. Therefore, by Theorem
Aut.(G) ~ ABCD,

G 96 D=6 ")

o ﬁ o ﬁ/ - a! ﬁ/ + ﬂ
(*y 5) (fy’ 6’) o ('y+7’ 58’ )
Since A, B,C, and D are abelian groups, we get

G 9 D=6 D0 5
Hence, A, is an abelian group and Aut.(G) ~ A. ~ A x B x C x D. O

Also,

Now, we will find the structure of the group Aut.(G). For this, we first take ¢
such that ged(t,m) = 1 and then we take ¢ such that ged (¢, m) > 1.

THEOREM 3.2. Let 4 divide m and t be odd such that gcd(t,m) = 1. Then

Zo X Lo X Lo X L2, if2t(s+1) =0 (mod m)
Auto(G) ~ ( Zo x Zo, if 2t(s +1) 0 (mod m),ged(m,s — 1) =2
Ly X Lo X Lo, if 2t(s +1) 0 (mod m),ged(m,s — 1) =4 or 8.

PROOF. Let ged(t,m) = 1. By using (G2) and (G3), we get, s = —1 (mod )
and ¢t = —1 (mod 2), respectively. Thus s, € {2 —1,2 1,32 —1 m—1}. Note
that, if s € {% —1,m — 1}, then 2¢(s +1) =0 (mod m). Thus by Proposition
we get A~ B ~ C ~ Zs. Let ged(m,s — 1) = u. Since m and s — 1 are even, u is
even. Also, u | m and u | s — 1. Therefore, u | m —2(s—1) =2 or 4. If u = 2, then
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by Proposition we get Fix(7) = {a' | I =0 (mod %)} ={1,a%}. Let§ € S.
Then a~16(a) € Fix(r) = {1,a? } which implies that d(a) € {a,a? *1}. Therefore,
D = () ~ Zy. If u =4, then 4 | % —2. Therefore, 7 =2 (mod 4) and so m = 4n,
where n =1 (mod 4). Then Fix(7) = {a' | {=0 (mod %)} = (a%) which implies
that §(a) € {a,a®+!,a%+1 a*F+1}. Since ™ + 1 is even, d(a) & {a%+!, a"F+1}.
Thus D =~ (§) ~ Z,. Hence, by Theorem [3.1] Aut.(G) ~ Zy x Zy x Zy X Zs.

Now, if s € {2 — 1,32 — 1}, then 2¢(s+1) # 0 (mod m). Thus by Proposition
3.2, we get A and B are trivial groups and C' ~ Z,. Let ged(m,s — 1) = u. Then
uw|mand u|s—1= 75 —2 which implies that u | m — 4(5 — 2) = 8. Therefore,
uw=2or4or 8.

Now, if u = 2, then as above, we get D ~ Zs and so, Aut.(G) ~ Zy X Zs.
If w = 4, then by Proposition we get Fix(1) = {a' | I = 0 (mod 2)} =
{1,a%,a%,a37m}. Thus, 6(a) € {a,a%“,a%“,a%ﬂ“}. Note that, (2 + 1)2 =
1(2(Z2 - 1)2) + m. Therefore, using (G1), (2 + 1)2 =1 (mod m). Thus, D ~
ZQ X ZQ.

Now, let u = 8. Then 8 | } — 2 which implies that 7 = 2 (mod 8). Thus
m = 8¢q, where ¢ = 1 (mod 8). Since u = 8, by Proposition Fix(7) = {a' |
I =0 (mod 2)} = (a¥) and so, 6(a) € {a,a®+1 @5+ ¢ % 1 g5+ g%+
a*F 1 @ H1Y Since ™ + 1 is even, d(a) € {a¥ T, a* T, o T o F 1) Thus
D ~ Zy x Zy. Hence, by Theorem we get

Zo X L, if ged(m,s—1)=2
ZQXZQXZQ, if ng(m,S—1)=4OI' 8.

o

Aut.(G) ~ { O
THEOREM 3.3. Let m = 2q, where ¢ > 1 is odd and gcd(t,m) = 1. Then,
AutC(G) ~ ZQ X Zg X ZQ X ZQ.

PROOF. Using (G1),(G2), and (G3), we get s,t € {"# —1,m — 1}. Then, the
result follows on the lines of the proof of Theorem [3.2} O

Now, we will discuss the structure of the automorphism group Aut(G) in the
case when ged(t,m) > 1.

THEOREM 3.4. Let m =2", n >4 and t be even. Then

Zo X Lo X Lo X Lo X Lon-2, if2t(s+1) =0 (mod m)

Aut.(G) ~
ute(G) {ZQ X Lo X Lign—2, if 2t(s+1) Z0 (mod m).

PROOF. Let t be even. Then t + 1 is odd and ged(m,t + 1) = 1. Therefore,
using (G3), we get s = 1 (mod 2"~ 1) that is, s = 1,2"~! + 1. Now, using (G2),
we get t = 0 (mod 2"~3). Therefore, t € {273 2772 3.2n=3 2n-1 5.9n=3 3.
2n=2 7.2773 2n1. Note that, for t = 2"~ ! or t = 2", G is the semidirect product
of H and K. Therefore, t € {2773 2772 3.27=3 5.27=3 3.9n=2 7.9n=3} Since
s = 1 (mod 2"71), by Proposition Fix(7) = (a?). Therefore, for § € S,
a~'8(a) € (a?). Thus 6(a) = a', where [ is odd. Hence, D ~ U(2") ~ Zg X Zign—2.

Note that, for t = 2"72,3.2"72 2t(s+1) = 0 (mod m). Therefore, by Proposi-
tion A~ B~ C ~Zy. Also, note that, for t € {2773 3.2n73 5.2n=3 7.9n=3}
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2t(s + 1) # 0 (mod m). Therefore, by Proposition A and B are trivial and
C ~ Z. Hence, the result holds by Theorem O

THEOREM 3.5. Let m = 4q and ged(t,m) = 2'd, where ¢ > 1 is odd, i €
{0,1,2}, and d divides q. Then

ZQXZQXZQXZQ, Zfdzl
(3.1) Auto(G) =< Zo x 7oy x Ty x Lo x U(q), ifd=q
ZQXZQXZQXZQXU(d), Zf1<d<q

PRrROOF. Let ged(t,m) = 2'd, where i € {0,1,2}, and d divides g. Then, using
(G2), s = —1 (mod %) which implies that s = 2 — 1, where 1 <1 < 4d. Since
ged(s, §) = 1, s is odd and so, I is even. Using (G1) and (G3), we get é% -1=0
(mod d) and t = % — 1 (mod ¢). Now, one can easily observe that 2t(s +1) =0
(mod m). Therefore, by Proposition A~B~(C ~7Zy Let 6 € S. We have
three cases namely, d =1lord=qor 1 <d<g.

CASE (i): Let d = 1. Then s = 2¢— 1 and ¢t € {qg — 1,2¢ — 1,3¢ — 1}.
Clearly, s # 1 (mod 2¢q) and ged(4q,2qg — 2) = 4. Therefore, by Proposition
Fix(7) = {1,a%,a?,a3?}. Since § € S and ¢+ 1,3q + 1 are even, 6(a) € {a,a??1}.
Thus, D ~ Zs.

CASE (ii): Let d = q. Then s = 2¢ + 1 and ¢ = ¢, otherwise the group G will
be the semidirect product of groups. Therefore, by Proposition Fix(1) = (a?).
Since § € S, 6(a) € {a' |1 € U(4q)}. Thus, D =~ U(4q) =~ Za x U(q).

CasE (iii): Let 1 < d < g. Then s = %q— , %—150 (mod d) andtz%—
(mod ¢). Now, one can easily observe that s Z 1 (mod 2¢) and

ged(m,s — 1) = ged (4q, l% — 2) = 2d or 4d.

If gcd(m,s — 1) = 2d, then by Proposition m Fix(r) = (a%q> and so d(a) €
{a, a%q“‘l, ol a4q_%q+1}. Clearly, for all i € {1, %q +1,...,4q— %‘1 +1}, ged(4,1) =
1. Therefore, i € U(4q) if and only if ¢ € U(4d). Thus D ~ U(4d) ~ Zy x U(d). If
ged(m, s — 1) = 4d, then using the similar argument, we get D ~ Zy x U(d).

Hence, combining all the cases (i)—(iii) and by Theorem (3.1) holds. O

THEOREM 3.6. Let m = 2q and ged(t,m) = 2'd, where ¢ > 1 is odd, i € {0, 1},
and d divides q. Then Aut.(G) ~ Zo X Zo X Zoy x U(d).

PROOF. The proof follows on the lines of the proof of Theorem O

THEOREM 3.7. Let m = 2"q, t be even and ged(m,t) = 2'd, where 1 <i < n,
n>=3,q>1is odd and d divides q. Then

Lo X Lo X Lo X Lo X Lgn—2 x U(d), if 2t(s+1) =0 (mod m)

Aut.(G) ~ {Z2 X Ty X Tgnz x U(d), if 2t(s +1) Z 0 (mod m).
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PROOF. CASE (i): Let d = g. Then ¢ divides ¢ and ¢ + 1 is odd which implies
that ged(t 4 1,m) = 1. Therefore, using (G2) and (G3), s =1 (mod ) and t =0
(mod 2"~3¢). Hence, using the similar argument as in Theorem

Zo X Ly X Loy X Ly X Lgn—2 X U(q), if 2t(s+1) =0 (mod m)
Ly X Ly X Lon—2 x U(q), if 2t(s+1) # 0 (mod m).

CASE (ii): Let d # ¢ and n — 2 < i < n. Then using (G2), s = —1 (mod %).
Thus s = lf —1, where 1 <1 < 2"d. Since ged(s, §) = 1, s is odd and so, [ is even.

Now, using (G1), £(55—1) =0 (mod 2"~*d) and by (G3). 1 = @*1 (mod 2"2g).
l

Since t is even, 5 is odd. Also, one can easily observe that gcd( ,d) = 1. Thus,
1 =1 (mod 2"~3d) and t = 2'd (mod 2"~2g). Clearly, 2t(s + 1) = 0 (mod m).
Therefore, by Proposition [3.2] A ~ B ~ C ~ Z,.

Sinced # ¢, s # 1 (mod Z). Also, ged(m,s—1) = ged (2"¢, 2(%—1)) =9on~1q
or 2"d. Therefore, by Propositionm7 Fix(r) = (a%q> or Fix(7) = (ad). Let § € S.
Then, using the similar argument as in the proof of Theorem Case(iii), we get
D ~ U(2"d). Hence, by Theorem B.1}, Aut(G) ~ Zy x Zy X Zy X Ly X Zign—2 x U(d).

CASE (iii): Let d # ¢ and ¢ = n — 3. Then using (G2), s = —1 (mod 27?), that
is, s = Z%I — 1, where 1 < 1 < 2" 'd. Now, using (G1) and (G3), I(1$ —1) =0
(mod 2"73d) and (¢t + 1)(I14 — 1) = 0 (mod 2"~2¢). If L is even, then t = 14 — 1
(mod 2"~2q) gives that t is odd, which is a contradiction. Therefore, [ is odd. Also,
one can easily observe that ged(l,d) = 1. Then, [4—1 = 2""3dl" and s = 2" ?dl'+1,
where 1 < I/ < 8. Clearly, ged(I', 4) = 1. Thus, (¢t + 1)’ = 0 (mod 21). If I is
odd, then (¢4 1) =0 (mod %q) which implies that ¢ is odd. So, I’ is even. Note
that, 2¢(s + 1) Z 0 (mod m). Therefore, by Proposition A and B are trivial
and C' ~ Zs.

Since d # ¢, s Z1 (mod %). Also, ged(m, s —1) = ged(2"q, 2(%1 —1))=2""14
or 2"d. Then using the similar argument as in the Case (ii), we get D ~ U(2"d).
Hence, by Theorem [3.1] Aut.(G) ~ Zs X Zy X Zgn—2 x U(d).

Note that, for 1 < ¢ < n — 4, there is no group G which is the Zappa—Szép
product of H and K (see |9, Theorem 3.11]). O

Aut.(G) ~ {

THEOREM 3.8. Let m = 2"q, t be odd and ged(t,m) = d, where n > 4 and q is
odd. Then

Auto(G) ~ Zo X Lo X Loy X Ly x U(d), if 2t(s+1) =0 (mod m)
T 2y x Zy x U(d), if 2t(s + 1) Z 0 (mod m).
PROOF. Using (G2), we have s = —1 (mod 2"~2%) which implies that s =

1229 — 1, where 1 < I < 4d. Since s — 1 = 2(2" 314 — 1) and 2734 —1 £ 0
(mod 2"72¢), s #1 (mod %). Now, using (G1), [(2"~ 3lq -1)=0 (mod d). One
can easily observe that ged(l,d) = 1. Therefore, 2"~ 3lq 1 = dl’, where ' is odd and
ged(l', 4) = 1. Therefore, ged(m,s — 1) = 2d and so Fix(r) = (2"714). Now, let
5 € S. Thena~'4(a) € (2"~'4) which implies that §(a) € {a*" M1 << 2d).
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Clearly, ged(2" 1% +1,4%) = 1, for all 7. Therefore, §(a) = a2" "1+ if and only
if ged(2" 1% +1,d) = 1. Thus D ~ (§) ~ U(2d) ~ Zy x U(d).
Now, Using (G3), we get

(3.2) (t+1) (%2”*3 - 1) =0 (mod 2"2g).
If [ is even, then by (3.2), t = %12"_3 —1 (mod 2"72q). Note that, 2t(s +1) =
2t(12"724) = 0 (mod m). Therefore, by Proposition A~ B~ C ~ Zs. Hence,
by Theorem Aut (G) >~ Zo X Zy X Lo X ZLs x U(d).
If [ is odd, then using (3.2), (¢t + 1)dl’ = 0 (mod 2"~?¢) which implies that
= —1 (mod 2"729). Clearly, 2t(s+1) = 2t(12"72%) # 0 (mod m). Therefore, by
Proposition A, B are trivial and C' ~ Zs. Hence, by Theorem Aut.(G) ~
ZQ X ZQ X U(d) O

THEOREM 3.9. Let m = 8¢, t be odd, and ged(t,m) = d, where ¢ > 1 is odd.
Then

Zo X Lo X Ly X Lo x U(d), if2t(s+1)=0 (mod m)

Aut.(G) ~ {Z2 X Ty x Ty x U(d), if 2t(s + 1) 0 (mod m).

PrOOF. Using (G2), we have s = —1 (mod 2%) which implies that s = 2/% —1,
where 1 < | < 4d. Now, using (G1), {(%4 — 1) = 0 (mod d). Clearly, ged(l,d) = 1.
Therefore, %q —1=0 (mod d). Using (G3), we get

(3.3) (t+ 1)(%1 - 1) =0 (mod 2q).

CASE (i): If [ is even, then by (8.3), ¢t = %q —1 (mod 2q). Note that, 2t(s+1) =
2t(2%q) = 0 (mod m). Therefore, by Proposition A~ B ~ C ~ Zs. Now,
s—1= 2(%’ — 1) # 0 (mod 4q). Also, one can easily observe that ged(m,s —1) =
ged (8q,2(%q — 1)) = 2d. Therefore, Fix(r) = (a%>. Let 6 € S. Then a='§(a) €
<a47q> which implies that d(a) € {a%Jrl | 1 < < 2d}. Clearly, ged (i, %) = 1,
for all 4. Therefore, 6(a) = a®" #4+! if and only if ged(2"71i% +1,d) = 1. Thus
D ~ (6) ~ U(2d) ~ Z3 x U(d). Hence, by Theorem B.1] Aut.(G) =~ Zy x Zy x Zs X
Zs x U(d).

CASE (ii): If [ is odd, then %q —1=0 (mod d) which implies that %’ —1=dl,
where [” is even and ged(l’, 4) = 1. Therefore, by the congruence relation
= —1 (mod ¥). Clearly, 2t(s + 1) # 0 (mod m). Therefore, by Proposition [3.2
A, B are trivial and C ~ Zs. Let § € S. One can easily observe that s = 1

(mod %) if and only if d = ¢. In this case, D ~ U(8¢q) ~ Zy x Zy x U(q).

Let d # q. Then s # 1 (mod %). Now, ged(m,s — 1) = gcd(8q,2(%q -1)) =
ged(8¢,2dl’) = 4d or 8d. Then using the similar argument as in the proof of
Theorem we get D ~ U(8d) ~ Zs X Zz x U(d). Hence, by Theorem [3.1
Autc(G) ~ ZQ X ZQ X Zg X U(d) O
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4. Autc(Zp2 X} Zp,), p is an odd prime

In [13], Yacoub classified the groups which are Zappa—Szép products of cyclic
groups of order m and order p?, where p is an odd prime (see [13], Conclusion]) as
follows.

M1:(a,b|am:1:bp2,ab:ba“,up2El (mod m)),
M2:(a,b|amzlsz2,ab:bta,tmzl (mod p?)),
Ms;={a,b|a" =1= bpz,ab =blaP L aPb = bap(p’drl)),

and in M3, p divides m. The groups M; and M; may be isomorphic to the group
M3 depending on the values of m,r and ¢t. Clearly, M; and M, are semidirect
products. Throughout this section G will denote the group M3 and we will be only
concerned about groups M3 which are Zappa—Szép products but not a semidirect
product. Let H = (b), K = (a) and the mutual actions of H and K are defined by
oa(b) = bt,1(a) = aP"*1 along with 0,»(b) = b and 7,(aP) = a?P™+1) | where ¢ and
r are integers satisfying the conditions

(G1) ged(t —1,p?) = p, that is, t = 1 + Ap, where ged(\,p) = 1,

(G2) ged(r,p) =1,

(G3) p(pr+1)? =p (mod m).

PROPOSITION 4.1. Let G be as above. Then Z(G) = ker(r) Fix(7), where

() = L) i (pr+ 1)P = (a%®), ifp*|m
ke()_{{l}, if (pr +1)P # {1y,  ifp*tm.

PROOF. Using |9, Lemma 4.2], if a! € ker(c), then for all j, we have bi* = b
which implies that j(1+ pA)! = j (mod p?). Thus jpIA =0 (mod p?) and so, [ =0
(mod p). Therefore, ker(o) = (aP). Now, let b/ € Fix(c). Then using the similar
argument we have 7 =0 (mod p). Thus Fix(c) = (7).

Now, let & € ker(7). Then by Lemma [9, Lemma 4.2], for all [, we have

i (mod m) and Fix(1) = {

(mod m

(4.1) 2 () P =D+ 1)

Note that, if ¥ € H* < Fix(o), then j = 0 (mod p). Therefore, for j =0 (mod p),
using (G3), (4.1) holds if and only if (pr +1)» =1 (mod m). Thus
®P), if (pr+1)P =1 (mod m)

et = {{1}, if (pr+1)P £ 1 (mod m).

Now, let a' € Fix(7). Then for all j, ([#.1)) holds if and only if I = 0 (mod =) and
p? divides m. Then

(@¥), ifp?|m

K* =Fix(1) = {{1}7 it fm,
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PROPOSITION 4.2. Let G be the group as above. Then

: Zyp, if (pr+1)» =1 (mod m) i ) Ly, if p* | m
WA= {{1} Fr+ 1P £1 (mod m), 0D C{{l}, i tm,
" Zp, if (pr+1)? =1 (mod m) . Zp, ifp*|m
() B = {{1} if (pr+1)? £1 (mod m), (iv) D= {{1} ifp>tm.

PROOF. (i) Let o € P be defined by a(b) = b°, where 0 < i < p* — 1
and ged(p,i) = 1. Clearly, o,(a(b)) = a(o,(b)). Now, by Proposition we
get b~ la(b) € ker(r). Then, a(b) = b, if (pr + 1)?» # 1 (mod m) and «a(b) €
{b,brt1 p2P+1 . p(P=DPHLf (pr 4 1)P = 1 (mod m). Hence, (i) holds.

(ii) Let 8 € Q. Then by Proposition Im(B) < H* = ker( ). Also, one can
easily observe that 3(a) = B(r(a)). Hence, by Proposition [4.1} (ii) holds.

(iii) Let v € R. Then by Proposition Im(y) < K* = Fix(r). Clearly,
v(0a(b)) = v(b). Hence, by Proposition [4.1] (iii) holds.

(iv) Let § € S be defined by 6(a) = a’, where ged(j,m) = 1. Then a=16(a) €
K* = Fix(r). Thus, by Proposition 6(a) = a, if p>tm and 6(a) € {aPu+1]|
0 <u < p-—1},if p?2 | m. Also, one can easily check that 7,(6(a)) = d(7(a)).
Hence, (iv) holds. O

LEMMA 4.1. Letae P, €@,y Rand § € S. Then
(i) af =B =p5, (i)ya=~vy=20dy, (i) By=0=7p
PROOF. The proof is similar to the proof of Lemma [3.1} O

THEOREM 4.1. Let A, B,C and D be defined as above. Then Aut.(G) ~ A x
BxCxD.

PROOF. The proof follows using a similar argument as in the proof of Theorem

B.1 O
THEOREM 4.2. Let G be the group defined as above. Then

Ly X Ly X Ly X Ly, if (pr+1)P =1 (mod m) and p* | m
Auto(G) ~ S Zy X Zy, if (pr +1)? =1 (mod m) or p? | m

{1}, otherwise.
PROOF. The proof follows from Proposition [£.2] and Theorem [£.1] O
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