CENTRAL AUTOMORPHISMS OF ZAPPA-SZÉP PRODUCTS OF TWO CYCLIC GROUPS

Vipul Kakkar and Ratan Lal

Abstract

The central automorphism group of the Zappa-Szép product of two cyclic groups of orders m and p^{2} is calculated, where p is a prime.

1. Introduction

Let $\operatorname{Aut}(G)$ be the group of automorphisms of a group G. Then, $\theta \in \operatorname{Aut}(G)$ is called a central automorphism of G if $g^{-1} \theta(g) \in Z(G)$ for all $g \in G$, where $Z(G)$ denotes the center of the group G. In fact, the set $\operatorname{Aut}_{c}(G)$ of all central automorphisms of the group G is a normal subgroup of Aut (G). Apparently, $\operatorname{Aut}_{c}(G)=C_{\operatorname{Aut}(G)}(\operatorname{Inn}(G))($ the centralizer of $\operatorname{Inn}(G)$ in the group $\operatorname{Aut}(G))$, where $\operatorname{Inn}(G)$ denotes the group of inner automorphisms of the group G. Thus, central automorphisms play an important role in the investigation of the group $\operatorname{Aut}(G)$. The study of central automorphisms of a group has been an interest to the algebraists (see [2, $3,5 \times 8 \mid 11]$).

Zappa 15] was the first to study the Zappa-Szép product of two groups which was also studied by J. Szép in a series of papers. The Zappa-Szép product is a natural generalization of the semidirect product of two groups. Let H and K be two subgroups of a group G. Then, G is called the internal Zappa-Szép product of H and K if $G=H K$ and $H \cap K=\{1\}$. If G is the internal Zappa-Szép product of H and K, then $k h=\sigma(k, h) \tau(k, h)$, where $\sigma(k, h) \in H$ and $\tau(k, h) \in K$. This determines the maps $\sigma: K \times H \rightarrow H$ and $\tau: K \times H \rightarrow K$ defined by $\sigma(k, h)=\sigma_{k}(h)$ and $\tau(k, h)=\tau_{h}(k)$ for all $h \in H$ and $k \in K$ respectively. These maps are called the matched pair of groups and satisfy the following conditions (see 4)
(C1) $\sigma_{1}(h)=h$ and $\tau_{1}(k)=k$,
(C4) $\tau_{h}\left(k k^{\prime}\right)=\tau_{\sigma_{k^{\prime}}(h)}(k) \tau_{h}\left(k^{\prime}\right)$,
(C2) $\sigma_{k}(1)=1=\tau_{h}(1)$,
(C5) $\sigma_{k}\left(h h^{\prime}\right)=\sigma_{k}(h) \sigma_{\tau_{h}(k)}\left(h^{\prime}\right)$,
(C3) $\sigma_{k k^{\prime}}(h)=\sigma_{k}\left(\sigma_{k^{\prime}}(h)\right)$,
(C6) $\tau_{h h^{\prime}}(k)=\tau_{h^{\prime}}\left(\tau_{h}(k)\right.$,
for all $h, h^{\prime} \in H$ and $k, k^{\prime} \in K$.

[^0]Now, let H and K be two groups, $\sigma: K \times H \rightarrow H$ and $\tau: K \times H \rightarrow K$ be two maps which satisfy the above conditions. Then, the set $H \times K$ with the binary operation defined by $(h, k)\left(h^{\prime}, k^{\prime}\right)=\left(h \sigma_{k}\left(h^{\prime}\right), \tau_{h^{\prime}}(k) k^{\prime}\right)$ forms a group called the external Zappa-Szép product of H and K. The internal Zappa-Szép product is isomorphic to the external Zappa-Szép product (see [4, Proposition 2.4]). We will identify the external Zappa-Szép product with the internal Zappa-Szép product. The Zappa-Szép product of the groups H and K is denoted by $H \bowtie K$.

In this paper, we compute the central automorphism groups of groups which are the Zappa-Szép products of two cyclic groups of orders m and p^{2}, where p is a prime. The Zappa-Szép products of semigroups is a source of new and interesting examples of C^{*}-algebras (see $[\mathbf{1}, \mathbf{1 4}$). One can construct new examples of finite group C^{*}-algebras using the results mentioned in this paper. The terminology used in this paper is the same as in $\mathbf{9}$ and $\mathbf{1 0}$. Throughout the paper, \mathbb{Z}_{n} denotes the cyclic group of order n. Let U and V be groups. Then $\operatorname{Hom}(U, V)$ and $\operatorname{Epi}(U, V)$ denote the groups of all group homomorphisms and onto group homomorphisms from U to V, respectively. If $U=V$, then we simply write $\operatorname{Epi}(U)$.

2. Structure of the central automorphism group

Let G be the Zappa-Szép product of two groups H and K. Let U, V and W be any groups. Then $\operatorname{Map}(U, V)$ denotes the set of all maps from the group U to the group V. If $\phi, \psi \in \operatorname{Map}(U, V)$ and $\eta \in \operatorname{Map}(V, W)$, then $\phi+\psi \in \operatorname{Map}(U, V)$ is defined by $(\phi+\psi)(u)=\phi(u) \psi(u), \eta \phi \in \operatorname{Map}(U, W)$ is defined by $\eta \phi(u)=\eta(\phi(u))$, $\sigma_{\phi}(\psi) \in \operatorname{Map}(U, V)$ is defined by $\left(\sigma_{\phi}(\psi)\right)(u)=\sigma_{\phi(u)}(\psi(u))$ and $\tau_{\phi}(\psi) \in \operatorname{Map}(U, V)$ is defined by $\left(\tau_{\phi}(\psi)\right)(u)=\tau_{\phi(u)}(\psi(u))$, for all $u \in U$. Let $\operatorname{ker}(\sigma)=\{k \in K \mid$ $\sigma_{k}(h)=h$ for all $\left.h \in H\right\}$ and $\operatorname{Fix}(\sigma)=\left\{h \in H \mid \sigma_{k}(h)=h\right.$, for all $\left.k \in K\right\}$. Similarly, we define the sets $\operatorname{ker}(\tau)$ and $\operatorname{Fix}(\tau)$. In this section, we study the structure of the central automorphism group of G.

Proposition 2.1 ($\mathbf{1 0}$. Corollary 2.1]). Let G be the Zappa-Szép product of two abelian groups H and K. Then $Z(G)=H^{*} \times K^{*}$, where $H^{*}=\operatorname{Fix}(\sigma) \cap \operatorname{ker}(\tau) \cap$ $Z(H)$ and $K^{*}=\operatorname{Fix}(\tau) \cap \operatorname{ker}(\sigma) \cap Z(K)$.

Let \mathcal{A}_{c} be the set of all matrices of the form $\left(\begin{array}{c}\alpha \\ \gamma \\ \gamma\end{array}\right)$, where $\alpha \in \operatorname{Epi}(H), \beta \in$ $\operatorname{Hom}\left(K, H^{*}\right), \gamma \in \operatorname{Hom}\left(H, K^{*}\right)$ and $\delta \in \operatorname{Epi}(K)$ satisfy the following conditions,
(A1) $h^{-1} \alpha(h) \in H^{*}$,
(A2) $k^{-1} \delta(k) \in K^{*}$,
(A3) $\beta(k) \sigma_{\delta(k)}(\alpha(h))=\alpha\left(\sigma_{k}(h)\right) \beta\left(\tau_{h}(k)\right)$,
(A4) $\tau_{\alpha(h)}(\delta(k)) \gamma(h)=\gamma\left(\sigma_{k}(h)\right) \delta\left(\tau_{h}(k)\right.$,
(A5) for any $h^{\prime} k^{\prime} \in G$, there exists a unique $h \in H$ and $k \in K$ such that $h^{\prime}=\alpha(h) \beta(k)$ and $k^{\prime}=\gamma(h) \delta(k)$.
for all $h, h^{\prime} \in H$ and $k, k^{\prime} \in K$. Then, the set \mathcal{A}_{c} forms a group with the binary operation defined as follows (see [9, p. 98]),

$$
\left(\begin{array}{ll}
\alpha^{\prime} & \beta^{\prime} \\
\gamma^{\prime} & \delta^{\prime}
\end{array}\right)\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)=\left(\begin{array}{cc}
\alpha^{\prime} \alpha+\beta^{\prime} \gamma & \alpha^{\prime} \beta+\beta^{\prime} \delta \\
\gamma^{\prime} \alpha+\delta^{\prime} \gamma & \gamma^{\prime} \beta+\delta^{\prime} \delta
\end{array}\right)
$$

Theorem 2.1. Let G be the Zappa-Szép product of two abelian groups H and K. Let \mathcal{A}_{c} be as above. Then there is an isomorphism of groups between $\operatorname{Aut}_{c}(G)$ and \mathcal{A}_{c} given by $\theta \leftrightarrow\left(\begin{array}{c}\alpha \\ \gamma \\ \gamma\end{array}\right)$, where $\theta(h)=\alpha(h) \gamma(h)$ and $\theta(k)=\beta(k) \delta(k)$, for all $h \in H$ and $k \in K$.

Proof. The proof follows along the lines of the proof of 10 . Theorem 2.2].
We identify the central automorphisms of G with the corresponding matrices in \mathcal{A}_{c}. Note that, if $h^{-1} \alpha(h) \in H^{*}$, then $\tau_{\alpha(h)}(k)=\tau_{h}(k)$, for all $h \in H$ and $k \in K$. Also, if $k^{-1} \delta(k) \in K^{*}$, then $\sigma_{\delta(k)}(h)=\sigma_{k}(h)$, for all $h \in H$ and $k \in K$. Let

$$
\begin{aligned}
P & =\left\{\alpha \in \operatorname{Aut}_{c}(H) \mid \sigma_{k}(\alpha(h))=\alpha\left(\sigma_{k}(h)\right), h^{-1} \alpha(h) \in H^{*} \forall h \in H, k \in K\right\}, \\
Q & =\left\{\beta \in \operatorname{Hom}\left(K, H^{*}\right) \mid \beta(k)=\beta\left(\tau_{h}(k)\right) \forall h \in H, k \in K\right\}, \\
R & =\left\{\gamma \in \operatorname{Hom}\left(H, K^{*}\right) \mid \gamma\left(\sigma_{k}(h)\right)=\gamma(h) \forall h \in H, k \in K\right\}, \\
S & =\left\{\delta \in \operatorname{Aut}_{c}(K) \mid \tau_{h}(\delta(k))=\delta\left(\tau_{h}(k)\right), k^{-1} \delta(k) \in K^{*} \forall h \in H, k \in K\right\}
\end{aligned}
$$

be subsets of the group $\operatorname{Aut}_{c}(G)$. Then one can easily check that P, Q, R and S are all subgroups of the group $\operatorname{Aut}_{c}(G)$. Let

$$
\begin{array}{ll}
A=\left\{\left.\left(\begin{array}{ll}
\alpha & 0 \\
0 & 1
\end{array}\right) \right\rvert\, \alpha \in P\right\}, & B=\left\{\left.\left(\begin{array}{ll}
1 & \beta \\
0 & 1
\end{array}\right) \right\rvert\, \beta \in Q\right\}, \\
C=\left\{\left.\left(\begin{array}{ll}
1 & 0 \\
\gamma & 1
\end{array}\right) \right\rvert\, \gamma \in R\right\}, & D=\left\{\left.\left(\begin{array}{ll}
1 & 0 \\
0 & \delta
\end{array}\right) \right\rvert\, \delta \in S\right\} .
\end{array}
$$

be the corresponding subsets of \mathcal{A}_{c}, where 0 is the trivial group homomorphism and 1 is the identity group automorphism. Then one can easily check that A, B, C and D are subgroups of \mathcal{A}_{c}. Note that A and D normalize B and C.

Theorem 2.2. 10. Theorem 2.3] Let G be the Zappa-Szép product of two groups H and K. Let A, B, C and D be defined as above. Then, if $1-\beta \gamma \in P$, for all maps β and γ, then $A B C D=\mathcal{A}_{c}$ and $\operatorname{Aut}_{c}(G) \simeq A B C D$.

3. $\operatorname{Aut}_{c}\left(\mathbb{Z}_{4} \bowtie \mathbb{Z}_{m}\right)$

In $\mathbf{1 2}$, Yacoub classified the groups which are Zappa-Szép products of cyclic groups of order 4 and order m. He listed them as (see [12 Conclusion])

$$
\begin{aligned}
& L_{1}=\left\langle a, b \mid a^{m}=1=b^{4}, a b=b a^{r}, r^{4} \equiv 1 \quad(\bmod m)\right\rangle, \\
& L_{2}=\left\langle a, b \mid a^{m}=1=b^{4}, a b=b^{3} a^{2 t+1}, a^{2} b=b a^{2 s}\right\rangle
\end{aligned}
$$

where in L_{2}, m is even. Note that, the group L_{1} may be isomorphic to the group L_{2} depending on the values of m, r and t (see $\mathbf{1 2}$. Theorem 5]). Clearly, L_{1} is a semidirect product. Throughout this section G will denote the group L_{2} and we will be only concerned about groups L_{2} which are Zappa-Szép products but not a semidirect product. Let $H=\langle b\rangle, K=\langle a\rangle$ and the mutual actions of H and K be defined by $\sigma_{a}(b)=b^{3}, \tau_{b}(a)=a^{2 t+1}$ along with $\sigma_{a^{2}}(b)=b$ and $\tau_{b}\left(a^{2}\right)=a^{2 s}$, where t and s are the integers satisfying the conditions
(G1) $2 s^{2} \equiv 2 \quad(\bmod m)$,
(G3) $2(t+1)(s-1) \equiv 0 \quad(\bmod m)$,
(G2) $4 t(s+1) \equiv 0(\bmod m)$,
(G4) $\operatorname{gcd}(s, m / 2)=1$.

Proposition 3.1. If G is the group defined above, then $Z(G)=\operatorname{ker}(\tau) \operatorname{Fix}(\tau)$, where

$$
\begin{gathered}
\operatorname{ker}(\tau)= \begin{cases}\left\{1, b^{2}\right\}, & \text { if } 2 t(s+1) \equiv 0(\bmod m) \\
\{1\}, & \text { if } 2 t(s+1) \not \equiv 0(\bmod m)\end{cases} \\
\operatorname{Fix}(\tau)= \begin{cases}\left\langle a^{2}\right\rangle, & \text { if } s \equiv 1\left(\bmod \frac{m}{2}\right) \\
\left\{a^{l} \left\lvert\, l \equiv 0\left(\bmod \frac{m}{\operatorname{gcd}(m, s-1)}\right)\right.\right\}, & \text { if } s \not \equiv 1\left(\bmod \frac{m}{2}\right) .\end{cases}
\end{gathered}
$$

Proof. For all $0 \leqslant i \leqslant 3$ and $0 \leqslant l \leqslant m-1$, we have

$$
\sigma_{a^{l}}\left(b^{i}\right)= \begin{cases}b^{-i}, & \text { if } l \text { is odd } \\ b^{i}, & \text { if } l \text { is even }\end{cases}
$$

and using ($C 6$), and 9 Lemma 3.1],

$$
\tau\left(b^{i}\right)\left(a^{l}\right)= \begin{cases}a^{l}, & \text { if } i=0 \\ a^{2 t+1+(l-1) s}, & \text { if } i=1 \text { and } l \text { is odd } \\ a^{2 t+2 t s+l}, & \text { if } i=2 \text { and } l \text { is odd } \\ a^{4 t+1+2 t s+(l-1) s}, & \text { if } i=3 \text { and } l \text { is odd } \\ a^{l s}, & \text { if } i=1,3 \text { and } l \text { is even } \\ a^{l}, & \text { if } i=2 \text { and } l \text { is even. }\end{cases}
$$

Now, one can easily observe that $\operatorname{ker}(\sigma)=\left\{a^{l} \mid l\right.$ is even $\}=\left\langle a^{2}\right\rangle, \operatorname{Fix}(\sigma)=\left\{1, b^{2}\right\}$,

$$
\operatorname{ker}(\tau)= \begin{cases}\left\{1, b^{2}\right\}, & \text { if } 2 t(s+1) \equiv 0(\bmod m) \\ \{1\}, & \text { if } 2 t(s+1) \not \equiv 0(\bmod m)\end{cases}
$$

and

$$
\operatorname{Fix}(\tau)= \begin{cases}\left\langle a^{2}\right\rangle, & \text { if } s \equiv 1\left(\bmod \frac{m}{2}\right) \\ \left\{a^{l} \left\lvert\, l \equiv 0\left(\bmod \frac{m}{\operatorname{gcd}(m, s-1)}\right)\right.\right\}, & \text { if } s \not \equiv 1\left(\bmod \frac{m}{2}\right)\end{cases}
$$

Clearly, $\operatorname{Fix}(\sigma) \cap \operatorname{ker}(\tau)=\operatorname{ker}(\tau)$ and $\operatorname{Fix}(\tau) \cap \operatorname{ker}(\sigma)=\operatorname{Fix}(\tau)$. Since both H and K are cyclic groups, $Z(H)=H$ and $Z(K)=K$. Thus, $H^{*}=\operatorname{ker}(\tau)$ and $K^{*}=\operatorname{Fix}(\tau)$. Hence, the result follows from Proposition 2.1

Proposition 3.2. Let G be the group defined as above. Then
(i) $A \simeq \begin{cases}\mathbb{Z}_{2}, & \text { if } 2 t(s+1) \equiv 0(\bmod m) \\ \{1\}, & \text { if } 2 t(s+1) \not \equiv 0(\bmod m),\end{cases}$
(ii) $B \simeq \begin{cases}\mathbb{Z}_{2}, & \text { if } 2 t(s+1) \equiv 0(\bmod m) \\ \{1\}, & \text { if } 2 t(s+1) \not \equiv 0(\bmod m),\end{cases}$
(iii) $C \simeq \mathbb{Z}_{2}$.

Proof. (i) Let $\alpha \in P$. Then $\alpha \in \operatorname{Aut}_{c}(H)$. Hence, by Proposition 3.1, (i) holds.
(ii) Let $\beta \in Q$. Then $\operatorname{Im}(\beta) \leqslant\left\{1, b^{2}\right\}$. Now, one can easily observe that $\beta(k)=\beta\left(\tau_{h}(k)\right)$ holds for all $h \in H$ and $k \in K$. Hence, by Proposition 3.1 (ii) holds.
(iii) Let $\gamma \in R$ be defined by $\gamma(b)=a^{\lambda}$, where $0 \leqslant \lambda \leqslant m-1$. Then using, $\gamma(b)=\gamma\left(\sigma_{a}(b)\right)$, we get $a^{\lambda}=\gamma(b)=\gamma\left(\sigma_{a}(b)\right)=\gamma\left(b^{3}\right)=a^{3 \lambda}$. Thus $2 \lambda \equiv 0$ $(\bmod m)$ which implies that $\lambda \equiv 0\left(\bmod \frac{m}{2}\right)$. Therefore, $\lambda \in\left\{0, \frac{m}{2}\right\}$. Hence, $C \simeq\langle\gamma\rangle \simeq \mathbb{Z}_{2}$.

Lemma 3.1. Let $\alpha \in P, \beta \in Q, \gamma \in R$ and $\delta \in S$. Then
(i) $\alpha \beta=\beta=\beta \delta$,
(ii) $\gamma \alpha=\gamma=\delta \gamma$,
(iii) $\beta \gamma=0=\gamma \beta$.

Proof. Let the maps $\alpha \in P, \beta \in Q, \gamma \in R$ and $\delta \in S$ be defined as $\alpha(b)=b^{i}$, $\beta(a)=b^{j}, \gamma(b)=a^{\lambda}$ and $\delta(a)=a^{r}$, where $i \in\{1,3\}, j \in\{0,2\}, \lambda \in\left\{0, \frac{m}{2}\right\}$ and $r \in U(m)$. Then for all $h \in H$ and $k \in K$, we have
(i) $\alpha \beta(a)=\alpha(\beta(a))=\alpha\left(b^{j}\right)=b^{i j}=b^{j}=\beta(a)$. Thus $\alpha \beta=\beta$. Also, $\beta \delta(a)=\beta(\delta(a))=\beta\left(a^{r}\right)=b^{r j}=b^{j}$, as r is odd. Therefore, $\beta \delta=\beta$.
(ii) $\gamma \alpha(b)=\gamma\left(b^{i}\right)=a^{i \lambda}=a^{\lambda}=\gamma(b)$. Thus $\gamma \alpha=\gamma$. Now, $\delta \gamma(b)=\delta\left(a^{\lambda}\right)=$ $a^{r \lambda}=a^{\lambda}$, as r is odd. Therefore, $\delta \gamma=\gamma$.
(iii) $\beta \gamma(b)=\beta\left(a^{\lambda}\right)=a^{j \lambda}=1$. Thus $\beta \gamma=0$. Now, $\gamma \beta(a)=\gamma\left(b^{j}\right)=b^{j \lambda}=1$. Hence, $\gamma \beta=0$.

Theorem 3.1. Let A, B, C and D be defined as above. Then $\operatorname{Aut}_{c}(G) \simeq A \times$ $B \times C \times D$.

Proof. By Lemma 3.1 (iii), we get $1-\beta \gamma=1 \in P$. Therefore, by Theorem 2.2. $\operatorname{Aut}_{c}(G) \simeq A B C D$,

$$
\left(\begin{array}{ll}
\alpha^{\prime} & \beta^{\prime} \\
\gamma^{\prime} & \delta^{\prime}
\end{array}\right)\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)=\left(\begin{array}{cc}
\alpha^{\prime} \alpha & \beta+\beta^{\prime} \\
\gamma^{\prime}+\gamma & \delta^{\prime} \delta
\end{array}\right)
$$

Also,

$$
\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)\left(\begin{array}{ll}
\alpha^{\prime} & \beta^{\prime} \\
\gamma^{\prime} & \delta^{\prime}
\end{array}\right)=\left(\begin{array}{cc}
\alpha \alpha^{\prime} & \beta^{\prime}+\beta \\
\gamma+\gamma^{\prime} & \delta \delta^{\prime}
\end{array}\right)
$$

Since A, B, C, and D are abelian groups, we get

$$
\left(\begin{array}{ll}
\alpha^{\prime} & \beta^{\prime} \\
\gamma^{\prime} & \delta^{\prime}
\end{array}\right)\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)=\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)\left(\begin{array}{ll}
\alpha^{\prime} & \beta^{\prime} \\
\gamma^{\prime} & \delta^{\prime}
\end{array}\right)
$$

Hence, \mathcal{A}_{c} is an abelian group and $\operatorname{Aut}_{c}(G) \simeq \mathcal{A}_{c} \simeq A \times B \times C \times D$.
Now, we will find the structure of the group $\operatorname{Aut}_{c}(G)$. For this, we first take t such that $\operatorname{gcd}(t, m)=1$ and then we take t such that $\operatorname{gcd}(t, m)>1$.

Theorem 3.2. Let 4 divide m and t be odd such that $\operatorname{gcd}(t, m)=1$. Then

$$
\operatorname{Aut}_{c}(G) \simeq \begin{cases}\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}, & \text { if } 2 t(s+1) \equiv 0(\bmod m) \\ \mathbb{Z}_{2} \times \mathbb{Z}_{2}, & \text { if } 2 t(s+1) \not \equiv 0(\bmod m), \operatorname{gcd}(m, s-1)=2 \\ \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}, & \text { if } 2 t(s+1) \not \equiv 0(\bmod m), \operatorname{gcd}(m, s-1)=4 \text { or } 8\end{cases}
$$

Proof. Let $\operatorname{gcd}(t, m)=1$. By using $(G 2)$ and $(G 3)$, we get, $s \equiv-1\left(\bmod \frac{m}{4}\right)$ and $t \equiv-1\left(\bmod \frac{m}{4}\right)$, respectively. Thus $s, t \in\left\{\frac{m}{4}-1, \frac{m}{2}-1, \frac{3 m}{4}-1, m-1\right\}$. Note that, if $s \in\left\{\frac{m}{2}-1, m-1\right\}$, then $2 t(s+1) \equiv 0(\bmod m)$. Thus by Proposition 3.2 . we get $A \simeq B \simeq C \simeq \mathbb{Z}_{2}$. Let $\operatorname{gcd}(m, s-1)=u$. Since m and $s-1$ are even, u is even. Also, $u \mid m$ and $u \mid s-1$. Therefore, $u \mid m-2(s-1)=2$ or 4. If $u=2$, then
by Proposition 3.1 we get $\operatorname{Fix}(\tau)=\left\{a^{l} \left\lvert\, l \equiv 0\left(\bmod \frac{m}{2}\right)\right.\right\}=\left\{1, a^{\frac{m}{2}}\right\}$. Let $\delta \in S$. Then $a^{-1} \delta(a) \in \operatorname{Fix}(\tau)=\left\{1, a^{\frac{m}{2}}\right\}$ which implies that $\delta(a) \in\left\{a, a^{\frac{m}{2}+1}\right\}$. Therefore, $D=\langle\delta\rangle \simeq \mathbb{Z}_{2}$. If $u=4$, then $4 \left\lvert\, \frac{m}{2}-2\right.$. Therefore, $\frac{m}{2} \equiv 2(\bmod 4)$ and so $m=4 n$, where $n \equiv 1(\bmod 4)$. Then $\operatorname{Fix}(\tau)=\left\{a^{l} \left\lvert\, l \equiv 0\left(\bmod \frac{m}{4}\right)\right.\right\}=\left\langle a^{\frac{m}{4}}\right\rangle$ which implies that $\delta(a) \in\left\{a, a^{\frac{m}{4}+1}, a^{\frac{m}{2}+1}, a^{\frac{3 m}{4}+1}\right\}$. Since $\frac{m}{4}+1$ is even, $\delta(a) \notin\left\{a^{\frac{m}{4}+1}, a^{\frac{3 m}{4}+1}\right\}$. Thus $D \simeq\langle\delta\rangle \simeq \mathbb{Z}_{2}$. Hence, by Theorem 3.1, $\operatorname{Aut}_{c}(G) \simeq \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

Now, if $s \in\left\{\frac{m}{4}-1, \frac{3 m}{4}-1\right\}$, then $2 t(s+1) \not \equiv 0(\bmod m)$. Thus by Proposition 3.2 , we get A and B are trivial groups and $C \simeq \mathbb{Z}_{2}$. Let $\operatorname{gcd}(m, s-1)=u$. Then $u \mid m$ and $u \left\lvert\, s-1=\frac{m}{4}-2\right.$ which implies that $u \left\lvert\, m-4\left(\frac{m}{4}-2\right)=8\right.$. Therefore, $u=2$ or 4 or 8 .

Now, if $u=2$, then as above, we get $D \simeq \mathbb{Z}_{2}$ and so, $\operatorname{Aut}_{c}(G) \simeq \mathbb{Z}_{2} \times \mathbb{Z}_{2}$. If $u=4$, then by Proposition 3.1, we get $\operatorname{Fix}(\tau)=\left\{a^{l} \left\lvert\, l \equiv 0\left(\bmod \frac{m}{4}\right)\right.\right\}=$ $\left\{1, a^{\frac{m}{4}}, a^{\frac{m}{2}}, a^{\frac{3 m}{4}}\right\}$. Thus, $\delta(a) \in\left\{a, a^{\frac{m}{4}+1}, a^{\frac{m}{2}+1}, a^{\frac{3 m}{4}+1}\right\}$. Note that, $\left(\frac{m}{4}+1\right)^{2}=$ $\frac{1}{2}\left(2\left(\frac{m}{4}-1\right)^{2}\right)+m$. Therefore, using $(G 1),\left(\frac{m}{4}+1\right)^{2} \equiv 1(\bmod m)$. Thus, $D \simeq$ $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

Now, let $u=8$. Then $8 \left\lvert\, \frac{m}{4}-2\right.$ which implies that $\frac{m}{4} \equiv 2(\bmod 8)$. Thus $m=8 q$, where $q \equiv 1(\bmod 8)$. Since $u=8$, by Proposition 3.1. $\operatorname{Fix}(\tau)=\left\{a^{l} \mid\right.$ $\left.l \equiv 0\left(\bmod \frac{m}{8}\right)\right\}=\left\langle a^{\frac{m}{8}}\right\rangle$ and so, $\delta(a) \in\left\{a, a^{\frac{m}{8}+1}, a^{\frac{m}{4}+1}, a^{\frac{5 m}{8}+1}, a^{\frac{m}{2}+1}, a^{\frac{5 m}{8}+1}\right.$, $\left.a^{\frac{3 m}{4}+1}, a^{\frac{7 m}{8}+1}\right\}$. Since $\frac{m}{8}+1$ is even, $\delta(a) \notin\left\{a^{\frac{m}{8}+1}, a^{\frac{3 m}{8}+1}, a^{\frac{5 m}{8}+1}, a^{\frac{7 m}{8}+1}\right\}$. Thus $D \simeq \mathbb{Z}_{2} \times \mathbb{Z}_{2}$. Hence, by Theorem 3.1. we get

$$
\operatorname{Aut}_{c}(G) \simeq \begin{cases}\mathbb{Z}_{2} \times \mathbb{Z}_{2}, & \text { if } \operatorname{gcd}(m, s-1)=2 \\ \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}, & \text { if } \operatorname{gcd}(m, s-1)=4 \text { or } 8\end{cases}
$$

Theorem 3.3. Let $m=2 q$, where $q>1$ is odd and $\operatorname{gcd}(t, m)=1$. Then, $\operatorname{Aut}_{c}(G) \simeq \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

Proof. Using $(G 1),(G 2)$, and $(G 3)$, we get $s, t \in\left\{\frac{m}{2}-1, m-1\right\}$. Then, the result follows on the lines of the proof of Theorem 3.2

Now, we will discuss the structure of the automorphism group $\operatorname{Aut}(G)$ in the case when $\operatorname{gcd}(t, m)>1$.

Theorem 3.4. Let $m=2^{n}, n \geqslant 4$ and t be even. Then

$$
\operatorname{Aut}_{c}(G) \simeq \begin{cases}\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2^{n-2}}, & \text { if } 2 t(s+1) \equiv 0(\bmod m) \\ \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2^{n-2}}, & \text { if } 2 t(s+1) \not \equiv 0(\bmod m)\end{cases}
$$

Proof. Let t be even. Then $t+1$ is odd and $\operatorname{gcd}(m, t+1)=1$. Therefore, using (G3), we get $s \equiv 1\left(\bmod 2^{n-1}\right)$ that is, $s=1,2^{n-1}+1$. Now, using (G2), we get $t \equiv 0\left(\bmod 2^{n-3}\right)$. Therefore, $t \in\left\{2^{n-3}, 2^{n-2}, 3 \cdot 2^{n-3}, 2^{n-1}, 5 \cdot 2^{n-3}, 3\right.$. $\left.2^{n-2}, 7 \cdot 2^{n-3}, 2^{n}\right\}$. Note that, for $t=2^{n-1}$ or $t=2^{n}, G$ is the semidirect product of H and K. Therefore, $t \in\left\{2^{n-3}, 2^{n-2}, 3 \cdot 2^{n-3}, 5 \cdot 2^{n-3}, 3 \cdot 2^{n-2}, 7 \cdot 2^{n-3}\right\}$. Since $s \equiv 1\left(\bmod 2^{n-1}\right)$, by Proposition 3.1 . $\operatorname{Fix}(\tau)=\left\langle a^{2}\right\rangle$. Therefore, for $\delta \in S$, $a^{-1} \delta(a) \in\left\langle a^{2}\right\rangle$. Thus $\delta(a)=a^{l}$, where l is odd. Hence, $D \simeq U\left(2^{n}\right) \simeq \mathbb{Z}_{2} \times \mathbb{Z}_{2^{n-2}}$.

Note that, for $t=2^{n-2}, 3 \cdot 2^{n-2}, 2 t(s+1) \equiv 0(\bmod m)$. Therefore, by Proposition 3.2. $A \simeq B \simeq C \simeq \mathbb{Z}_{2}$. Also, note that, for $t \in\left\{2^{n-3}, 3 \cdot 2^{n-3}, 5 \cdot 2^{n-3}, 7 \cdot 2^{n-3}\right\}$,
$2 t(s+1) \not \equiv 0(\bmod m)$. Therefore, by Proposition $3.2, A$ and B are trivial and $C \simeq \mathbb{Z}_{2}$. Hence, the result holds by Theorem 3.1.

Theorem 3.5. Let $m=4 q$ and $\operatorname{gcd}(t, m)=2^{i} d$, where $q>1$ is odd, $i \in$ $\{0,1,2\}$, and d divides q. Then

$$
\operatorname{Aut}_{c}(G) \simeq \begin{cases}\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}, & \text { if } d=1 \tag{3.1}\\ \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times U(q), & \text { if } d=q \\ \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times U(d), & \text { if } 1<d<q\end{cases}
$$

Proof. Let $\operatorname{gcd}(t, m)=2^{i} d$, where $i \in\{0,1,2\}$, and d divides q. Then, using $(G 2), s \equiv-1\left(\bmod \frac{q}{d}\right)$ which implies that $s=l \frac{q}{d}-1$, where $1 \leqslant l \leqslant 4 d$. Since $\operatorname{gcd}\left(s, \frac{m}{2}\right)=1, s$ is odd and so, l is even. Using (G1) and (G3), we get $\frac{l q}{2 d}-1 \equiv 0$ $(\bmod d)$ and $t \equiv \frac{l q}{2 d}-1(\bmod q)$. Now, one can easily observe that $2 t(s+1) \equiv 0$ $(\bmod m)$. Therefore, by Proposition $3.2, A \simeq B \simeq C \simeq \mathbb{Z}_{2}$. Let $\delta \in S$. We have three cases namely, $d=1$ or $d=q$ or $1<d<q$.

Case (i): Let $d=1$. Then $s=2 q-1$ and $t \in\{q-1,2 q-1,3 q-1\}$. Clearly, $s \not \equiv 1(\bmod 2 q)$ and $\operatorname{gcd}(4 q, 2 q-2)=4$. Therefore, by Proposition 3.1. $\operatorname{Fix}(\tau)=\left\{1, a^{q}, a^{2 q}, a^{3 q}\right\}$. Since $\delta \in S$ and $q+1,3 q+1$ are even, $\delta(a) \in\left\{a, a^{2 q+1}\right\}$. Thus, $D \simeq \mathbb{Z}_{2}$.

Case (ii): Let $d=q$. Then $s=2 q+1$ and $t=q$, otherwise the group G will be the semidirect product of groups. Therefore, by Proposition 3.1, $\operatorname{Fix}(\tau)=\left\langle a^{2}\right\rangle$. Since $\delta \in S, \delta(a) \in\left\{a^{l} \mid l \in U(4 q)\right\}$. Thus, $D \simeq U(4 q) \simeq \mathbb{Z}_{2} \times U(q)$.

CASE (iii): Let $1<d<q$. Then $s=\frac{l q}{d}-1, \frac{l q}{2 d}-1 \equiv 0(\bmod d)$ and $t \equiv \frac{l q}{2 d}-1$ $(\bmod q)$. Now, one can easily observe that $s \not \equiv 1(\bmod 2 q)$ and

$$
\operatorname{gcd}(m, s-1)=\operatorname{gcd}\left(4 q, l \frac{q}{d}-2\right)=2 d \text { or } 4 d
$$

If $\operatorname{gcd}(m, s-1)=2 d$, then by Proposition 3.1. $\operatorname{Fix}(\tau)=\left\langle a^{\frac{2 q}{d}}\right\rangle$ and so $\delta(a) \in$ $\left\{a, a^{\frac{2 q}{d}+1}, \ldots, a^{4 q-\frac{2 q}{d}+1}\right\}$. Clearly, for all $i \in\left\{1, \frac{2 q}{d}+1, \ldots, 4 q-\frac{2 q}{d}+1\right\}, \operatorname{gcd}\left(\frac{q}{d}, i\right)=$ 1. Therefore, $i \in U(4 q)$ if and only if $i \in U(4 d)$. Thus $D \simeq U(4 d) \simeq \mathbb{Z}_{2} \times U(d)$. If $\operatorname{gcd}(m, s-1)=4 d$, then using the similar argument, we get $D \simeq \mathbb{Z}_{2} \times U(d)$.

Hence, combining all the cases (i)-(iii) and by Theorem 3.1 3.1 holds.
Theorem 3.6. Let $m=2 q$ and $\operatorname{gcd}(t, m)=2^{i} d$, where $q>1$ is odd, $i \in\{0,1\}$, and d divides q. Then $\operatorname{Aut}_{c}(G) \simeq \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times U(d)$.

Proof. The proof follows on the lines of the proof of Theorem 3.5
Theorem 3.7. Let $m=2^{n} q, t$ be even and $\operatorname{gcd}(m, t)=2^{i} d$, where $1 \leqslant i \leqslant n$, $n \geqslant 3, q>1$ is odd and d divides q. Then

$$
\operatorname{Aut}_{c}(G) \simeq \begin{cases}\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2^{n-2}} \times U(d), & \text { if } 2 t(s+1) \equiv 0(\bmod m) \\ \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2^{n-2}} \times U(d), & \text { if } 2 t(s+1) \not \equiv 0(\bmod m)\end{cases}
$$

Proof. Case (i): Let $d=q$. Then q divides t and $t+1$ is odd which implies that $\operatorname{gcd}(t+1, m)=1$. Therefore, using $(G 2)$ and $(G 3), s \equiv 1\left(\bmod \frac{m}{2}\right)$ and $t \equiv 0$ $\left(\bmod 2^{n-3} q\right)$. Hence, using the similar argument as in Theorem 3.4.

$$
\operatorname{Aut}_{c}(G) \simeq \begin{cases}\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2^{n-2}} \times U(q), & \text { if } 2 t(s+1) \equiv 0(\bmod m) \\ \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2^{n-2}} \times U(q), & \text { if } 2 t(s+1) \not \equiv 0(\bmod m)\end{cases}
$$

Case (ii): Let $d \neq q$ and $n-2 \leqslant i \leqslant n$. Then using $(G 2), s \equiv-1\left(\bmod \frac{q}{d}\right)$. Thus $s=l \frac{q}{d}-1$, where $1 \leqslant l \leqslant 2^{n} d$. Since $\operatorname{gcd}\left(s, \frac{m}{2}\right)=1, s$ is odd and so, l is even. Now, using $(G 1), \frac{l}{2}\left(\frac{l q}{2 d}-1\right) \equiv 0\left(\bmod 2^{n-3} d\right)$ and by $(G 3), t \equiv \frac{l q}{2 d}-1\left(\bmod 2^{n-2} q\right)$. Since t is even, $\frac{l}{2}$ is odd. Also, one can easily observe that $\operatorname{gcd}\left(\frac{l}{2}, d\right)=1$. Thus, $\frac{l q}{2 d} \equiv 1\left(\bmod 2^{n-3} d\right)$ and $t \equiv 2^{i} d\left(\bmod 2^{n-2} q\right)$. Clearly, $2 t(s+1) \equiv 0(\bmod m)$. Therefore, by Proposition 3.2, $A \simeq B \simeq C \simeq \mathbb{Z}_{2}$.

Since $d \neq q, s \not \equiv 1\left(\bmod \frac{m}{2}\right)$. Also, $\operatorname{gcd}(m, s-1)=\operatorname{gcd}\left(2^{n} q, 2\left(\frac{l q}{2 d}-1\right)\right)=2^{n-1} d$ or $2^{n} d$. Therefore, by Proposition 3.1. $\operatorname{Fix}(\tau)=\left\langle a^{\frac{2 q}{d}}\right\rangle$ or $\operatorname{Fix}(\tau)=\left\langle a^{\frac{q}{d}}\right\rangle$. Let $\delta \in S$. Then, using the similar argument as in the proof of Theorem 3.5 Case(iii), we get $D \simeq U\left(2^{n} d\right)$. Hence, by Theorem 3.1, $\operatorname{Aut}_{c}(G) \simeq \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2^{n-2}} \times U(d)$.

CASE (iii): Let $d \neq q$ and $i=n-3$. Then using $(G 2), s \equiv-1\left(\bmod \frac{2 q}{d}\right)$, that is, $s=l \frac{2 q}{d}-1$, where $1 \leqslant l \leqslant 2^{n-1} d$. Now, using $(G 1)$ and $(G 3), l\left(l \frac{q}{d}-1\right) \equiv 0$ $\left(\bmod 2^{n-3} d\right)$ and $(t+1)\left(l \frac{q}{d}-1\right) \equiv 0\left(\bmod 2^{n-2} q\right)$. If l is even, then $t \equiv l \frac{q}{d}-1$ $\left(\bmod 2^{n-2} q\right)$ gives that t is odd, which is a contradiction. Therefore, l is odd. Also, one can easily observe that $\operatorname{gcd}(l, d)=1$. Then, $l \frac{q}{d}-1=2^{n-3} d l^{\prime}$ and $s=2^{n-2} d l^{\prime}+1$, where $1 \leqslant l^{\prime} \leqslant \frac{8 q}{d}$. Clearly, $\operatorname{gcd}\left(l^{\prime}, \frac{q}{d}\right)=1$. Thus, $(t+1) l^{\prime} \equiv 0\left(\bmod \frac{2 q}{d}\right)$. If l^{\prime} is odd, then $(t+1) \equiv 0\left(\bmod \frac{2 q}{d}\right)$ which implies that t is odd. So, l^{\prime} is even. Note that, $2 t(s+1) \not \equiv 0(\bmod m)$. Therefore, by Proposition $3.2, A$ and B are trivial and $C \simeq \mathbb{Z}_{2}$.

Since $d \neq q, s \not \equiv 1\left(\bmod \frac{m}{2}\right)$. Also, $\operatorname{gcd}(m, s-1)=\operatorname{gcd}\left(2^{n} q, 2\left(\frac{l q}{d}-1\right)\right)=2^{n-1} d$ or $2^{n} d$. Then using the similar argument as in the Case (ii), we get $D \simeq U\left(2^{n} d\right)$. Hence, by Theorem 3.1. $\operatorname{Aut}_{c}(G) \simeq \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2^{n-2}} \times U(d)$.

Note that, for $1 \leqslant i \leqslant n-4$, there is no group G which is the Zappa-Szép product of H and K (see [9, Theorem 3.11]).

Theorem 3.8. Let $m=2^{n} q, t$ be odd and $\operatorname{gcd}(t, m)=d$, where $n \geqslant 4$ and q is odd. Then

$$
\operatorname{Aut}_{c}(G) \simeq \begin{cases}\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times U(d), & \text { if } 2 t(s+1) \equiv 0(\bmod m) \\ \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times U(d), & \text { if } 2 t(s+1) \not \equiv 0(\bmod m)\end{cases}
$$

Proof. Using (G2), we have $s \equiv-1\left(\bmod 2^{n-2} \frac{q}{d}\right)$ which implies that $s=$ $l 2^{n-2} \frac{q}{d}-1$, where $1 \leqslant l \leqslant 4 d$. Since $s-1=2\left(2^{n-3} \frac{l q}{d}-1\right)$ and $2^{n-3} \frac{l q}{d}-1 \not \equiv 0$ $\left(\bmod 2^{n-2} q\right), s \not \equiv 1\left(\bmod \frac{m}{2}\right)$. Now, using $(G 1), l\left(2^{n-3} \frac{l q}{d}-1\right) \equiv 0(\bmod d)$. One can easily observe that $\operatorname{gcd}(l, d)=1$. Therefore, $2^{n-3} \frac{l q}{d}-1=d l^{\prime}$, where l^{\prime} is odd and $\operatorname{gcd}\left(l^{\prime}, \frac{q}{d}\right)=1$. Therefore, $\operatorname{gcd}(m, s-1)=2 d$ and so, $\operatorname{Fix}(\tau)=\left\langle 2^{n-1} \frac{q}{d}\right\rangle$. Now, let $\delta \in S$. Then $a^{-1} \delta(a) \in\left\langle 2^{n-1} \frac{q}{d}\right\rangle$ which implies that $\delta(a) \in\left\{\left.a^{2^{n-1} i \frac{q}{d}+1} \right\rvert\, 1 \leqslant i \leqslant 2 d\right\}$.

Clearly, $\operatorname{gcd}\left(2^{n-1} i \frac{q}{d}+1, \frac{q}{d}\right)=1$, for all i. Therefore, $\delta(a)=a^{2^{n-1} i \frac{q}{d}+1}$ if and only if $\operatorname{gcd}\left(2^{n-1} i \frac{q}{d}+1, d\right)=1$. Thus $D \simeq\langle\delta\rangle \simeq U(2 d) \simeq \mathbb{Z}_{2} \times U(d)$.

Now, Using (G3), we get

$$
\begin{equation*}
(t+1)\left(\frac{l q}{d} 2^{n-3}-1\right) \equiv 0 \quad\left(\bmod 2^{n-2} q\right) \tag{3.2}
\end{equation*}
$$

If l is even, then by $(3.2), t \equiv \frac{l q}{d} 2^{n-3}-1\left(\bmod 2^{n-2} q\right)$. Note that, $2 t(s+1) \equiv$ $2 t\left(l 2^{n-2} \frac{q}{d}\right) \equiv 0(\bmod m)$. Therefore, by Proposition $3.2, A \simeq B \simeq C \simeq \mathbb{Z}_{2}$. Hence, by Theorem 3.1, $\operatorname{Aut}_{c}(G) \simeq \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times U(d)$.

If l is odd, then using $3.2,(t+1) d l^{\prime} \equiv 0\left(\bmod 2^{n-2} q\right)$ which implies that $t \equiv-1\left(\bmod 2^{n-2} \frac{q}{d}\right)$. Clearly, $2 t(s+1)=2 t\left(l 2^{n-2} \frac{q}{d}\right) \not \equiv 0(\bmod m)$. Therefore, by Proposition 3.2, A, B are trivial and $C \simeq \mathbb{Z}_{2}$. Hence, by Theorem 3.1, $\operatorname{Aut}_{c}(G) \simeq$ $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times U(d)$.

Theorem 3.9. Let $m=8 q$, t be odd, and $\operatorname{gcd}(t, m)=d$, where $q>1$ is odd. Then

$$
\operatorname{Aut}_{c}(G) \simeq \begin{cases}\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times U(d), & \text { if } 2 t(s+1) \equiv 0(\bmod m) \\ \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times U(d), & \text { if } 2 t(s+1) \not \equiv 0(\bmod m)\end{cases}
$$

Proof. Using $(G 2)$, we have $s \equiv-1\left(\bmod 2 \frac{q}{d}\right)$ which implies that $s=2 l \frac{q}{d}-1$, where $1 \leqslant l \leqslant 4 d$. Now, using $(G 1), l\left(\frac{l q}{d}-1\right) \equiv 0(\bmod d)$. Clearly, $\operatorname{gcd}(l, d)=1$. Therefore, $\frac{l q}{d}-1 \equiv 0(\bmod d)$. Using (G3), we get

$$
\begin{equation*}
(t+1)\left(\frac{l q}{d}-1\right) \equiv 0 \quad(\bmod 2 q) \tag{3.3}
\end{equation*}
$$

CASE (i): If l is even, then by $3.3, t \equiv \frac{l q}{d}-1(\bmod 2 q)$. Note that, $2 t(s+1) \equiv$ $2 t\left(2 \frac{l q}{d}\right) \equiv 0(\bmod m)$. Therefore, by Proposition $3.2 A \simeq B \simeq C \simeq \mathbb{Z}_{2}$. Now, $s-1=2\left(\frac{l q}{d}-1\right) \not \equiv 0(\bmod 4 q)$. Also, one can easily observe that $\operatorname{gcd}(m, s-1)=$ $\operatorname{gcd}\left(8 q, 2\left(\frac{l q}{d}-1\right)\right)=2 d$. Therefore, $\operatorname{Fix}(\tau)=\left\langle a^{\frac{q q}{d}}\right\rangle$. Let $\delta \in S$. Then $a^{-1} \delta(a) \in$ $\left\langle a^{\frac{4 q}{d}}\right\rangle$ which implies that $\delta(a) \in\left\{\left.a^{\frac{4 i q}{d}+1} \right\rvert\, 1 \leqslant i \leqslant 2 d\right\}$. Clearly, $\operatorname{gcd}\left(i, \frac{4 q}{d}\right)=1$, for all i. Therefore, $\delta(a)=a^{2^{n-1} i \frac{q}{d}+1}$ if and only if $\operatorname{gcd}\left(2^{n-1} i \frac{q}{d}+1, d\right)=1$. Thus $D \simeq\langle\delta\rangle \simeq U(2 d) \simeq \mathbb{Z}_{2} \times U(d)$. Hence, by Theorem 3.1, $\operatorname{Aut}_{c}(G) \simeq \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times$ $\mathbb{Z}_{2} \times U(d)$.

CASE (ii): If l is odd, then $\frac{l q}{d}-1 \equiv 0(\bmod d)$ which implies that $\frac{l q}{d}-1=d l^{\prime}$, where l^{\prime} is even and $\operatorname{gcd}\left(l^{\prime}, \frac{q}{d}\right)=1$. Therefore, by the congruence relation (3.3), $t \equiv-1\left(\bmod \frac{q}{d}\right)$. Clearly, $2 t(s+1) \not \equiv 0(\bmod m)$. Therefore, by Proposition 3.2 , A, B are trivial and $C \simeq \mathbb{Z}_{2}$. Let $\delta \in S$. One can easily observe that $s \equiv 1$ $\left(\bmod \frac{m}{2}\right)$ if and only if $d=q$. In this case, $D \simeq U(8 q) \simeq \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times U(q)$.

Let $d \neq q$. Then $s \not \equiv 1\left(\bmod \frac{m}{2}\right)$. Now, $\operatorname{gcd}(m, s-1)=\operatorname{gcd}\left(8 q, 2\left(\frac{l q}{d}-1\right)\right)=$ $\operatorname{gcd}\left(8 q, 2 d l^{\prime}\right)=4 d$ or $8 d$. Then using the similar argument as in the proof of Theorem 3.7, we get $D \simeq U(8 d) \simeq \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times U(d)$. Hence, by Theorem 3.1. $\operatorname{Aut}_{c}(G) \simeq \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times U(d)$.

4. $\operatorname{Aut}_{c}\left(\mathbb{Z}_{p^{2}} \bowtie \mathbb{Z}_{m}\right), p$ is an odd prime

In 13, Yacoub classified the groups which are Zappa-Szép products of cyclic groups of order m and order p^{2}, where p is an odd prime (see $\mathbf{1 3}$. Conclusion]) as follows.

$$
\begin{aligned}
& M_{1}=\left\langle a, b \mid a^{m}=1=b^{p^{2}}, a b=b a^{u}, u^{p^{2}} \equiv 1 \quad(\bmod m)\right\rangle, \\
& M_{2}=\left\langle a, b \mid a^{m}=1=b^{p^{2}}, a b=b^{t} a, t^{m} \equiv 1 \quad\left(\bmod p^{2}\right)\right\rangle, \\
& M_{3}=\left\langle a, b \mid a^{m}=1=b^{p^{2}}, a b=b^{t} a^{p r+1}, a^{p} b=b a^{p(p r+1)}\right\rangle,
\end{aligned}
$$

and in M_{3}, p divides m. The groups M_{1} and M_{2} may be isomorphic to the group M_{3} depending on the values of m, r and t. Clearly, M_{1} and M_{2} are semidirect products. Throughout this section G will denote the group M_{3} and we will be only concerned about groups M_{3} which are Zappa-Szép products but not a semidirect product. Let $H=\langle b\rangle, K=\langle a\rangle$ and the mutual actions of H and K are defined by $\sigma_{a}(b)=b^{t}, \tau_{b}(a)=a^{p r+1}$ along with $\sigma_{a^{p}}(b)=b$ and $\tau_{b}\left(a^{p}\right)=a^{p(p r+1)}$, where t and r are integers satisfying the conditions
(G1) $\operatorname{gcd}\left(t-1, p^{2}\right)=p$, that is, $t=1+\lambda p$, where $\operatorname{gcd}(\lambda, p)=1$,
(G2) $\operatorname{gcd}(r, p)=1$,
(G3) $p(p r+1)^{p} \equiv p(\bmod m)$.
Proposition 4.1. Let G be as above. Then $Z(G)=\operatorname{ker}(\tau) \operatorname{Fix}(\tau)$, where

$$
\operatorname{ker}(\tau)=\left\{\begin{array}{ll}
\left\langle b^{p}\right\rangle, & \text { if }(p r+1)^{p} \equiv 1(\bmod m) \\
\{1\}, & \text { if }(p r+1)^{p} \not \equiv 1(\bmod m)
\end{array} \text { and } \operatorname{Fix}(\tau)= \begin{cases}\left\langle a^{\frac{m}{p}}\right\rangle, & \text { if } p^{2} \mid m \\
\{1\}, & \text { if } p^{2} \nmid m .\end{cases}\right.
$$

Proof. Using 9 Lemma 4.2], if $a^{l} \in \operatorname{ker}(\sigma)$, then for all j, we have $b^{j t^{l}}=b^{j}$ which implies that $j(1+p \lambda)^{l} \equiv j\left(\bmod p^{2}\right)$. Thus $j p l \lambda \equiv 0\left(\bmod p^{2}\right)$ and so, $l \equiv 0$ $(\bmod p)$. Therefore, $\operatorname{ker}(\sigma)=\left\langle a^{p}\right\rangle$. Now, let $b^{j} \in \operatorname{Fix}(\sigma)$. Then using the similar argument we have $j \equiv 0(\bmod p)$. Thus $\operatorname{Fix}(\sigma)=\left\langle b^{p}\right\rangle$.

Now, let $b^{j} \in \operatorname{ker}(\tau)$. Then by Lemma 9 , Lemma 4.2], for all l, we have

$$
\begin{equation*}
a^{\frac{j l(l-1)}{2}\left((p r+1)^{\lambda p}-1\right)+l(p r+1)^{j}}=a^{l} . \tag{4.1}
\end{equation*}
$$

Note that, if $b^{j} \in H^{*} \leqslant \operatorname{Fix}(\sigma)$, then $j \equiv 0(\bmod p)$. Therefore, for $j \equiv 0(\bmod p)$, using (G3), 4.1 holds if and only if $(p r+1)^{p} \equiv 1(\bmod m)$. Thus

$$
H^{*}=\operatorname{ker}(\tau)= \begin{cases}\left\langle b^{p}\right\rangle, & \text { if }(p r+1)^{p} \equiv 1(\bmod m) \\ \{1\}, & \text { if }(p r+1)^{p} \not \equiv 1(\bmod m)\end{cases}
$$

Now, let $a^{l} \in \operatorname{Fix}(\tau)$. Then for all $\left.j, 4.1\right)$ holds if and only if $l \equiv 0\left(\bmod \frac{m}{p}\right)$ and p^{2} divides m. Then

$$
K^{*}=\operatorname{Fix}(\tau)= \begin{cases}\left\langle a^{\frac{m}{p}}\right\rangle, & \text { if } p^{2} \mid m \\ \{1\}, & \text { if } p^{2} \nmid m\end{cases}
$$

Proposition 4.2. Let G be the group as above. Then
(i) $A \simeq \begin{cases}\mathbb{Z}_{p}, & \text { if }(p r+1)^{p} \equiv 1(\bmod m) \\ \{1\}, & \text { if }(p r+1)^{p} \not \equiv 1(\bmod m),\end{cases}$
(iii) $C \simeq \begin{cases}\mathbb{Z}_{p}, & \text { if } p^{2} \mid m \\ \{1\}, & \text { if } p^{2} \nmid m,\end{cases}$
(ii) $\quad B \simeq \begin{cases}\mathbb{Z}_{p}, & \text { if }(p r+1)^{p} \equiv 1(\bmod m) \\ \{1\}, & \text { if }(p r+1)^{p} \not \equiv 1(\bmod m),\end{cases}$
(iv) $\quad D \simeq \begin{cases}\mathbb{Z}_{p}, & \text { if } p^{2} \mid m \\ \{1\}, & \text { if } p^{2} \nmid m .\end{cases}$

Proof. (i) Let $\alpha \in P$ be defined by $\alpha(b)=b^{i}$, where $0 \leqslant i \leqslant p^{2}-1$ and $\operatorname{gcd}(p, i)=1$. Clearly, $\sigma_{a}(\alpha(b))=\alpha\left(\sigma_{a}(b)\right)$. Now, by Proposition 4.1 we get $b^{-1} \alpha(b) \in \operatorname{ker}(\tau)$. Then, $\alpha(b)=b$, if $(p r+1)^{p} \not \equiv 1(\bmod m)$ and $\alpha(b) \in$ $\left\{b, b^{p+1}, b^{2 p+1}, \ldots, b^{(p-1) p+1}\right\}$ if $(p r+1)^{p} \equiv 1(\bmod m)$. Hence, (i) holds.
(ii) Let $\beta \in Q$. Then by Proposition 4.1, $\operatorname{Im}(\beta) \leqslant H^{*}=\operatorname{ker}(\tau)$. Also, one can easily observe that $\beta(a)=\beta\left(\tau_{b}(a)\right)$. Hence, by Proposition 4.1 (ii) holds.
(iii) Let $\gamma \in R$. Then by Proposition 4.1. $\operatorname{Im}(\gamma) \leqslant K^{*}=\operatorname{Fix}(\tau)$. Clearly, $\gamma\left(\sigma_{a}(b)\right)=\gamma(b)$. Hence, by Proposition 4.1, (iii) holds.
(iv) Let $\delta \in S$ be defined by $\delta(a)=a^{j}$, where $\operatorname{gcd}(j, m)=1$. Then $a^{-1} \delta(a) \in$ $K^{*}=\operatorname{Fix}(\tau)$. Thus, by Proposition 4.1, $\delta(a)=a$, if $p^{2} \nmid m$ and $\delta(a) \in\left\{\left.a^{\frac{m}{p}} u+1 \right\rvert\,\right.$ $0 \leqslant u \leqslant p-1\}$, if $p^{2} \mid m$. Also, one can easily check that $\tau_{b}(\delta(a))=\delta\left(\tau_{b}(a)\right)$. Hence, (iv) holds.

Lemma 4.1. Let $\alpha \in P, \beta \in Q, \gamma \in R$ and $\delta \in S$. Then
(i) $\alpha \beta=\beta=\beta \delta$,
(ii) $\gamma \alpha=\gamma=\delta \gamma$,
(iii) $\beta \gamma=0=\gamma \beta$.

Proof. The proof is similar to the proof of Lemma 3.1
Theorem 4.1. Let A, B, C and D be defined as above. Then $\operatorname{Aut}_{c}(G) \simeq A \times$ $B \times C \times D$.

Proof. The proof follows using a similar argument as in the proof of Theorem 3.1.

Theorem 4.2. Let G be the group defined as above. Then

$$
\operatorname{Aut}_{c}(G) \simeq \begin{cases}\mathbb{Z}_{p} \times \mathbb{Z}_{p} \times \mathbb{Z}_{p} \times \mathbb{Z}_{p}, & \text { if }(p r+1)^{p} \equiv 1(\bmod m) \text { and } p^{2} \mid m \\ \mathbb{Z}_{p} \times \mathbb{Z}_{p}, & \text { if }(p r+1)^{p} \equiv 1(\bmod m) \text { or } p^{2} \mid m \\ \{1\}, & \text { otherwise }\end{cases}
$$

Proof. The proof follows from Proposition 4.2 and Theorem 4.1.
Acknowledgement. The authors thank the referee for his/her valuable comments and suggestions.

References

1. N. Brownlowe, J. Ramagge, D. Robertson, M. F. Whittaker, Zappa-Szép products of semigroups and their C^{*}-algebras, J. Funct. Anal. 266 (2014), 3937-3967.
2. M. J. Curran, A non-abelian automorphism group with all automorphisms central, Bull. Austral. Math. Soc. 26 (1982), 393-387.
3. M. J. Curran, D. J. McCaughan, Central automorphisms that are almost inner, Comm. Algebra 29(5) (2001), 2081-2087.
4. A. Firat, C. Sinan, Knit products of some groups and their applications, Rend. Semin. Mat. Univ. Padova 121 (2009), 1-11.
5. S. P. Glasby, 2-groups with every automorphism central, J. Austral. Math. Soc. 41(A) (1986), 233-236.
6. M. H. Jafari, A. R. Jamali, On the nilpotency and solubility of the central automorphism group of a finite group, Algebra Colloq. 15(3) (2008), 485-492.
7. \qquad , On the occurrence of some finite groups in the central automorphism group of finite groups, Math. Proc. Royal Irish Acad. 106A(2) (2006), 139-148.
8. A. R. Jamali, H. Mousavi, On the central automorphism groups of finite p-groups, Algebra Colloq. 9(1) (2002), 7-14.
9. R. Lal, V. Kakkar, Automorphisms of Zappa-Szép product, Adv. Group Theory Appl. 14 (2022), 95-135.
10. \qquad , Central automorphisms of Zappa-Szép products, https://doi.org/10.48550/arXiv. 2212.06592
11. J. J. Malone, p-groups with non-abelian automorphism groups and all auto-morphisms central, Bull. Austral. Math. Soc. 29 (1984), 35-37.
12. K. R. Yacoub, On general products of two finite cyclic groups one being of order 4 (Arabic summary), Proc. Math. Phys. Soc. Egypt 21 (1957), 119-126.
13. \qquad , On general products of two finite cyclic groups one of which being of order p^{2}, Publ. Math. Debrecen 6 (1959), 26-39.
14. D. Yang, B. Li, Zappa-Szép actions of groups on product systems, J. Oper. Theory 88(2) (2022), 247-274.
15. G. Zappa, Sulla costruzione dei gruppi prodotto di due dati sottogruppi permutabili tra loro, Atti Secondo Congresso Un. Mat. Ital. Bologna 1940, Edizioni Cremonense (Rome 1942), 119-125.

Department of Mathematics
(Received 0701 2023)
Central University of Rajasthan
(Revised 1608 2023)
Ajmer
India
vplkakkar@gmail.com
Department of Mathematics
Galgotias University
Greater Noida
India
vermarattan789@gmail.com

[^0]: 2020 Mathematics Subject Classification: Primary 20D45; Secondary 20D45.
 Key words and phrases: automorphism group, central automorphism group, Zappa-Szép product.

 Communicated by Igor Dolinka.

