
PUBLICATIONS DE L’INSTITUT MATHÉMATIQUE
Nouvelle série, tome 114 (128) (2023), 39–50 DOI: https://doi.org/10.2298/PIM2328039K

CENTRAL AUTOMORPHISMS OF ZAPPA–SZÉP
PRODUCTS OF TWO CYCLIC GROUPS

Vipul Kakkar and Ratan Lal

Abstract. The central automorphism group of the Zappa–Szép product of
two cyclic groups of orders 𝑚 and 𝑝2 is calculated, where 𝑝 is a prime.

1. Introduction

Let Aut(𝐺) be the group of automorphisms of a group 𝐺. Then, 𝜃 ∈ Aut(𝐺)
is called a central automorphism of 𝐺 if 𝑔−1𝜃(𝑔) ∈ 𝑍(𝐺) for all 𝑔 ∈ 𝐺, where
𝑍(𝐺) denotes the center of the group 𝐺. In fact, the set Aut𝑐(𝐺) of all cen-
tral automorphisms of the group 𝐺 is a normal subgroup of Aut(𝐺). Apparently,
Aut𝑐(𝐺) = 𝐶Aut(𝐺)(Inn(𝐺))(the centralizer of Inn(𝐺) in the group Aut(𝐺)), where
Inn(𝐺) denotes the group of inner automorphisms of the group 𝐺. Thus, central au-
tomorphisms play an important role in the investigation of the group Aut(𝐺). The
study of central automorphisms of a group has been an interest to the algebraists
(see [2,3,5–8,11]).

Zappa [15] was the first to study the Zappa–Szép product of two groups which
was also studied by J. Szép in a series of papers. The Zappa–Szép product is a
natural generalization of the semidirect product of two groups. Let 𝐻 and 𝐾 be
two subgroups of a group 𝐺. Then, 𝐺 is called the internal Zappa–Szép product of
𝐻 and 𝐾 if 𝐺 = 𝐻𝐾 and 𝐻 ∩𝐾 = {1}. If 𝐺 is the internal Zappa–Szép product
of 𝐻 and 𝐾, then 𝑘ℎ = 𝜎(𝑘, ℎ)𝜏(𝑘, ℎ), where 𝜎(𝑘, ℎ) ∈ 𝐻 and 𝜏(𝑘, ℎ) ∈ 𝐾. This
determines the maps 𝜎 : 𝐾×𝐻 → 𝐻 and 𝜏 : 𝐾×𝐻 → 𝐾 defined by 𝜎(𝑘, ℎ) = 𝜎𝑘(ℎ)
and 𝜏(𝑘, ℎ) = 𝜏ℎ(𝑘) for all ℎ ∈ 𝐻 and 𝑘 ∈ 𝐾 respectively. These maps are called
the matched pair of groups and satisfy the following conditions (see [4])

(C1) 𝜎1(ℎ) = ℎ and 𝜏1(𝑘) = 𝑘,

(C2) 𝜎𝑘(1) = 1 = 𝜏ℎ(1),
(C3) 𝜎𝑘𝑘′(ℎ) = 𝜎𝑘(𝜎𝑘′(ℎ)),

(C4) 𝜏ℎ(𝑘𝑘′) = 𝜏𝜎𝑘′ (ℎ)(𝑘)𝜏ℎ(𝑘′),
(C5) 𝜎𝑘(ℎℎ′) = 𝜎𝑘(ℎ)𝜎𝜏ℎ(𝑘)(ℎ′),
(C6) 𝜏ℎℎ′(𝑘) = 𝜏ℎ′(𝜏ℎ(𝑘),

for all ℎ, ℎ′ ∈ 𝐻 and 𝑘, 𝑘′ ∈ 𝐾.
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Now, let 𝐻 and 𝐾 be two groups, 𝜎 : 𝐾 ×𝐻 → 𝐻 and 𝜏 : 𝐾 ×𝐻 → 𝐾 be two
maps which satisfy the above conditions. Then, the set 𝐻 × 𝐾 with the binary
operation defined by (ℎ, 𝑘)(ℎ′, 𝑘′) = (ℎ𝜎𝑘(ℎ′), 𝜏ℎ′(𝑘)𝑘′) forms a group called the
external Zappa–Szép product of 𝐻 and 𝐾. The internal Zappa–Szép product is
isomorphic to the external Zappa–Szép product (see [4, Proposition 2.4]). We will
identify the external Zappa–Szép product with the internal Zappa–Szép product.
The Zappa–Szép product of the groups 𝐻 and 𝐾 is denoted by 𝐻 ◁▷ 𝐾.

In this paper, we compute the central automorphism groups of groups which
are the Zappa–Szép products of two cyclic groups of orders 𝑚 and 𝑝2, where 𝑝 is a
prime. The Zappa–Szép products of semigroups is a source of new and interesting
examples of 𝐶*-algebras (see [1, 14]). One can construct new examples of finite
group 𝐶*-algebras using the results mentioned in this paper. The terminology used
in this paper is the same as in [9] and [10]. Throughout the paper, Z𝑛 denotes the
cyclic group of order 𝑛. Let 𝑈 and 𝑉 be groups. Then Hom(𝑈, 𝑉 ) and Epi(𝑈, 𝑉 )
denote the groups of all group homomorphisms and onto group homomorphisms
from 𝑈 to 𝑉 , respectively. If 𝑈 = 𝑉 , then we simply write Epi(𝑈).

2. Structure of the central automorphism group

Let 𝐺 be the Zappa–Szép product of two groups 𝐻 and 𝐾. Let 𝑈, 𝑉 and 𝑊
be any groups. Then Map(𝑈, 𝑉 ) denotes the set of all maps from the group 𝑈 to
the group 𝑉 . If 𝜑, 𝜓 ∈ Map(𝑈, 𝑉 ) and 𝜂 ∈ Map(𝑉,𝑊 ), then 𝜑+ 𝜓 ∈ Map(𝑈, 𝑉 ) is
defined by (𝜑+𝜓)(𝑢) = 𝜑(𝑢)𝜓(𝑢), 𝜂𝜑 ∈ Map(𝑈,𝑊 ) is defined by 𝜂𝜑(𝑢) = 𝜂(𝜑(𝑢)),
𝜎𝜑(𝜓) ∈ Map(𝑈, 𝑉 ) is defined by (𝜎𝜑(𝜓))(𝑢) = 𝜎𝜑(𝑢)(𝜓(𝑢)) and 𝜏𝜑(𝜓) ∈ Map(𝑈, 𝑉 )
is defined by (𝜏𝜑(𝜓))(𝑢) = 𝜏𝜑(𝑢)(𝜓(𝑢)), for all 𝑢 ∈ 𝑈 . Let ker(𝜎) = {𝑘 ∈ 𝐾 |
𝜎𝑘(ℎ) = ℎ for all ℎ ∈ 𝐻} and Fix(𝜎) = {ℎ ∈ 𝐻 | 𝜎𝑘(ℎ) = ℎ, for all 𝑘 ∈ 𝐾}.
Similarly, we define the sets ker(𝜏) and Fix(𝜏). In this section, we study the
structure of the central automorphism group of 𝐺.

Proposition 2.1 ( [10, Corollary 2.1]). Let 𝐺 be the Zappa–Szép product of
two abelian groups 𝐻 and 𝐾. Then 𝑍(𝐺) = 𝐻* ×𝐾*, where 𝐻* = Fix(𝜎)∩ker(𝜏)∩
𝑍(𝐻) and 𝐾* = Fix(𝜏) ∩ ker(𝜎) ∩ 𝑍(𝐾).

Let A𝑐 be the set of all matrices of the form
(︀ 𝛼 𝛽

𝛾 𝛿

)︀
, where 𝛼 ∈ Epi(𝐻), 𝛽 ∈

Hom(𝐾,𝐻*), 𝛾 ∈ Hom(𝐻,𝐾*) and 𝛿 ∈ Epi(𝐾) satisfy the following conditions,
(A1) ℎ−1𝛼(ℎ) ∈ 𝐻*,
(A2) 𝑘−1𝛿(𝑘) ∈ 𝐾*,
(A3) 𝛽(𝑘)𝜎𝛿(𝑘)(𝛼(ℎ)) = 𝛼(𝜎𝑘(ℎ))𝛽(𝜏ℎ(𝑘)),
(A4) 𝜏𝛼(ℎ)(𝛿(𝑘))𝛾(ℎ) = 𝛾(𝜎𝑘(ℎ))𝛿(𝜏ℎ(𝑘),
(A5) for any ℎ′𝑘′ ∈ 𝐺, there exists a unique ℎ ∈ 𝐻 and 𝑘 ∈ 𝐾 such that

ℎ′ = 𝛼(ℎ)𝛽(𝑘) and 𝑘′ = 𝛾(ℎ)𝛿(𝑘).
for all ℎ, ℎ′ ∈ 𝐻 and 𝑘, 𝑘′ ∈ 𝐾. Then, the set A𝑐 forms a group with the binary
operation defined as follows (see [9, p. 98]),(︁

𝛼′ 𝛽′

𝛾′ 𝛿′

)︁(︁
𝛼 𝛽
𝛾 𝛿

)︁
=

(︁
𝛼′𝛼+ 𝛽′𝛾 𝛼′𝛽 + 𝛽′𝛿
𝛾′𝛼+ 𝛿′𝛾 𝛾′𝛽 + 𝛿′𝛿

)︁
.
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Theorem 2.1. Let 𝐺 be the Zappa–Szép product of two abelian groups 𝐻 and
𝐾. Let A𝑐 be as above. Then there is an isomorphism of groups between Aut𝑐(𝐺)
and A𝑐 given by 𝜃 ↔

(︀ 𝛼 𝛽
𝛾 𝛿

)︀
, where 𝜃(ℎ) = 𝛼(ℎ)𝛾(ℎ) and 𝜃(𝑘) = 𝛽(𝑘)𝛿(𝑘), for all

ℎ ∈ 𝐻 and 𝑘 ∈ 𝐾.
Proof. The proof follows along the lines of the proof of [10, Theorem 2.2]. □

We identify the central automorphisms of 𝐺 with the corresponding matrices
in A𝑐. Note that, if ℎ−1𝛼(ℎ) ∈ 𝐻*, then 𝜏𝛼(ℎ)(𝑘) = 𝜏ℎ(𝑘), for all ℎ ∈ 𝐻 and 𝑘 ∈ 𝐾.
Also, if 𝑘−1𝛿(𝑘) ∈ 𝐾*, then 𝜎𝛿(𝑘)(ℎ) = 𝜎𝑘(ℎ), for all ℎ ∈ 𝐻 and 𝑘 ∈ 𝐾. Let

𝑃 = {𝛼 ∈ Aut𝑐(𝐻) | 𝜎𝑘(𝛼(ℎ)) = 𝛼(𝜎𝑘(ℎ)), ℎ−1𝛼(ℎ) ∈ 𝐻* ∀ ℎ ∈ 𝐻, 𝑘 ∈ 𝐾},
𝑄 = {𝛽 ∈ Hom(𝐾,𝐻*) | 𝛽(𝑘) = 𝛽(𝜏ℎ(𝑘)) ∀ ℎ ∈ 𝐻, 𝑘 ∈ 𝐾},
𝑅 = {𝛾 ∈ Hom(𝐻,𝐾*) | 𝛾(𝜎𝑘(ℎ)) = 𝛾(ℎ) ∀ ℎ ∈ 𝐻, 𝑘 ∈ 𝐾},
𝑆 = {𝛿 ∈ Aut𝑐(𝐾) | 𝜏ℎ(𝛿(𝑘)) = 𝛿(𝜏ℎ(𝑘)), 𝑘−1𝛿(𝑘) ∈ 𝐾* ∀ ℎ ∈ 𝐻, 𝑘 ∈ 𝐾}

be subsets of the group Aut𝑐(𝐺). Then one can easily check that 𝑃 , 𝑄, 𝑅 and 𝑆
are all subgroups of the group Aut𝑐(𝐺). Let

𝐴 =
{︁(︁𝛼 0

0 1
)︁

| 𝛼 ∈ 𝑃
}︀
, 𝐵 =

{︁(︁1 𝛽
0 1

)︁
| 𝛽 ∈ 𝑄

}︁
,

𝐶 =
{︁(︁1 0
𝛾 1

)︁
| 𝛾 ∈ 𝑅

}︁
, 𝐷 =

{︁(︁1 0
0 𝛿

)︁
| 𝛿 ∈ 𝑆

}︁
.

be the corresponding subsets of A𝑐, where 0 is the trivial group homomorphism
and 1 is the identity group automorphism. Then one can easily check that 𝐴, 𝐵,
𝐶 and 𝐷 are subgroups of A𝑐. Note that 𝐴 and 𝐷 normalize 𝐵 and 𝐶.

Theorem 2.2. [10, Theorem 2.3] Let 𝐺 be the Zappa–Szép product of two
groups 𝐻 and 𝐾. Let 𝐴,𝐵,𝐶 and 𝐷 be defined as above. Then, if 1 − 𝛽𝛾 ∈ 𝑃 , for
all maps 𝛽 and 𝛾, then 𝐴𝐵𝐶𝐷 = A𝑐 and Aut𝑐(𝐺) ≃ 𝐴𝐵𝐶𝐷.

3. Aut𝑐(Z4 ◁▷ Z𝑚)

In [12], Yacoub classified the groups which are Zappa–Szép products of cyclic
groups of order 4 and order 𝑚. He listed them as (see [12, Conclusion])

𝐿1 = ⟨𝑎, 𝑏 | 𝑎𝑚 = 1 = 𝑏4, 𝑎𝑏 = 𝑏𝑎𝑟, 𝑟4 ≡ 1 (mod 𝑚)⟩,
𝐿2 = ⟨𝑎, 𝑏 | 𝑎𝑚 = 1 = 𝑏4, 𝑎𝑏 = 𝑏3𝑎2𝑡+1, 𝑎2𝑏 = 𝑏𝑎2𝑠⟩,

where in 𝐿2, 𝑚 is even. Note that, the group 𝐿1 may be isomorphic to the group
𝐿2 depending on the values of 𝑚, 𝑟 and 𝑡 (see [12, Theorem 5]). Clearly, 𝐿1 is a
semidirect product. Throughout this section 𝐺 will denote the group 𝐿2 and we
will be only concerned about groups 𝐿2 which are Zappa–Szép products but not a
semidirect product. Let 𝐻 = ⟨𝑏⟩, 𝐾 = ⟨𝑎⟩ and the mutual actions of 𝐻 and 𝐾 be
defined by 𝜎𝑎(𝑏) = 𝑏3, 𝜏𝑏(𝑎) = 𝑎2𝑡+1 along with 𝜎𝑎2(𝑏) = 𝑏 and 𝜏𝑏(𝑎2) = 𝑎2𝑠, where
𝑡 and 𝑠 are the integers satisfying the conditions

(G1) 2𝑠2 ≡ 2 (mod 𝑚),
(G2) 4𝑡(𝑠+ 1) ≡ 0 (mod 𝑚),

(G3) 2(𝑡+ 1)(𝑠− 1) ≡ 0 (mod 𝑚),
(G4) gcd

(︀
𝑠,𝑚/2

)︀
= 1.
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Proposition 3.1. If 𝐺 is the group defined above, then 𝑍(𝐺) = ker(𝜏) Fix(𝜏),
where

ker(𝜏) =
{︃

{1, 𝑏2}, if 2𝑡(𝑠+ 1) ≡ 0 (mod 𝑚)
{1}, if 2𝑡(𝑠+ 1) ̸≡ 0 (mod 𝑚)

,

Fix(𝜏) =
{︃

⟨𝑎2⟩, if 𝑠 ≡ 1 (mod 𝑚
2 ){︁

𝑎𝑙 | 𝑙 ≡ 0 (mod 𝑚
gcd(𝑚,𝑠−1) )

}︁
, if 𝑠 ̸≡ 1 (mod 𝑚

2 ).

Proof. For all 0 ⩽ 𝑖 ⩽ 3 and 0 ⩽ 𝑙 ⩽ 𝑚− 1, we have

𝜎𝑎𝑙(𝑏𝑖) =
{︃
𝑏−𝑖, if 𝑙 is odd
𝑏𝑖, if 𝑙 is even ,

and using (𝐶6), and [9, Lemma 3.1],

𝜏(𝑏𝑖)(𝑎𝑙) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑎𝑙, if 𝑖 = 0
𝑎2𝑡+1+(𝑙−1)𝑠, if 𝑖 = 1 and 𝑙 is odd
𝑎2𝑡+2𝑡𝑠+𝑙, if 𝑖 = 2 and 𝑙 is odd
𝑎4𝑡+1+2𝑡𝑠+(𝑙−1)𝑠, if 𝑖 = 3 and 𝑙 is odd
𝑎𝑙𝑠, if 𝑖 = 1, 3 and 𝑙 is even
𝑎𝑙, if 𝑖 = 2 and 𝑙 is even.

Now, one can easily observe that ker(𝜎) = {𝑎𝑙 | 𝑙 is even} = ⟨𝑎2⟩, Fix(𝜎) = {1, 𝑏2},

ker(𝜏) =
{︃

{1, 𝑏2}, if 2𝑡(𝑠+ 1) ≡ 0 (mod 𝑚)
{1}, if 2𝑡(𝑠+ 1) ̸≡ 0 (mod 𝑚),

and

Fix(𝜏) =
{︃

⟨𝑎2⟩, if 𝑠 ≡ 1 (mod 𝑚
2 ){︁

𝑎𝑙 | 𝑙 ≡ 0 (mod 𝑚
gcd(𝑚,𝑠−1) )

}︁
, if 𝑠 ̸≡ 1 (mod 𝑚

2 ).
Clearly, Fix(𝜎) ∩ ker(𝜏) = ker(𝜏) and Fix(𝜏) ∩ ker(𝜎) = Fix(𝜏). Since both 𝐻
and 𝐾 are cyclic groups, 𝑍(𝐻) = 𝐻 and 𝑍(𝐾) = 𝐾. Thus, 𝐻* = ker(𝜏) and
𝐾* = Fix(𝜏). Hence, the result follows from Proposition 2.1. □

Proposition 3.2. Let 𝐺 be the group defined as above. Then

(i) 𝐴 ≃

{︃
Z2, if 2𝑡(𝑠+ 1) ≡ 0 (mod 𝑚)
{1}, if 2𝑡(𝑠+ 1) ̸≡ 0 (mod 𝑚),

(ii) 𝐵 ≃

{︃
Z2, if 2𝑡(𝑠+ 1) ≡ 0 (mod 𝑚)
{1}, if 2𝑡(𝑠+ 1) ̸≡ 0 (mod 𝑚),

(iii) 𝐶 ≃ Z2.

Proof. (i) Let 𝛼 ∈ 𝑃 . Then 𝛼 ∈ Aut𝑐(𝐻). Hence, by Proposition 3.1, (i)
holds.

(ii) Let 𝛽 ∈ 𝑄. Then Im(𝛽) ⩽ {1, 𝑏2}. Now, one can easily observe that
𝛽(𝑘) = 𝛽(𝜏ℎ(𝑘)) holds for all ℎ ∈ 𝐻 and 𝑘 ∈ 𝐾. Hence, by Proposition 3.1, (ii)
holds.
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(iii) Let 𝛾 ∈ 𝑅 be defined by 𝛾(𝑏) = 𝑎𝜆, where 0 ⩽ 𝜆 ⩽ 𝑚 − 1. Then using,
𝛾(𝑏) = 𝛾(𝜎𝑎(𝑏)), we get 𝑎𝜆 = 𝛾(𝑏) = 𝛾(𝜎𝑎(𝑏)) = 𝛾(𝑏3) = 𝑎3𝜆. Thus 2𝜆 ≡ 0
(mod 𝑚) which implies that 𝜆 ≡ 0 (mod 𝑚

2 ). Therefore, 𝜆 ∈ {0, 𝑚
2 }. Hence,

𝐶 ≃ ⟨𝛾⟩ ≃ Z2. □

Lemma 3.1. Let 𝛼 ∈ 𝑃 , 𝛽 ∈ 𝑄, 𝛾 ∈ 𝑅 and 𝛿 ∈ 𝑆. Then
(i) 𝛼𝛽 = 𝛽 = 𝛽𝛿, (ii) 𝛾𝛼 = 𝛾 = 𝛿𝛾, (iii) 𝛽𝛾 = 0 = 𝛾𝛽.

Proof. Let the maps 𝛼 ∈ 𝑃 , 𝛽 ∈ 𝑄, 𝛾 ∈ 𝑅 and 𝛿 ∈ 𝑆 be defined as 𝛼(𝑏) = 𝑏𝑖,
𝛽(𝑎) = 𝑏𝑗 , 𝛾(𝑏) = 𝑎𝜆 and 𝛿(𝑎) = 𝑎𝑟, where 𝑖 ∈ {1, 3}, 𝑗 ∈ {0, 2}, 𝜆 ∈ {0, 𝑚

2 } and
𝑟 ∈ 𝑈(𝑚). Then for all ℎ ∈ 𝐻 and 𝑘 ∈ 𝐾, we have

(i) 𝛼𝛽(𝑎) = 𝛼(𝛽(𝑎)) = 𝛼(𝑏𝑗) = 𝑏𝑖𝑗 = 𝑏𝑗 = 𝛽(𝑎). Thus 𝛼𝛽 = 𝛽. Also,
𝛽𝛿(𝑎) = 𝛽(𝛿(𝑎)) = 𝛽(𝑎𝑟) = 𝑏𝑟𝑗 = 𝑏𝑗 , as 𝑟 is odd. Therefore, 𝛽𝛿 = 𝛽.

(ii) 𝛾𝛼(𝑏) = 𝛾(𝑏𝑖) = 𝑎𝑖𝜆 = 𝑎𝜆 = 𝛾(𝑏). Thus 𝛾𝛼 = 𝛾. Now, 𝛿𝛾(𝑏) = 𝛿(𝑎𝜆) =
𝑎𝑟𝜆 = 𝑎𝜆, as 𝑟 is odd. Therefore, 𝛿𝛾 = 𝛾.

(iii) 𝛽𝛾(𝑏) = 𝛽(𝑎𝜆) = 𝑎𝑗𝜆 = 1. Thus 𝛽𝛾 = 0. Now, 𝛾𝛽(𝑎) = 𝛾(𝑏𝑗) = 𝑏𝑗𝜆 = 1.
Hence, 𝛾𝛽 = 0. □

Theorem 3.1. Let 𝐴,𝐵,𝐶 and 𝐷 be defined as above. Then Aut𝑐(𝐺) ≃ 𝐴 ×
𝐵 × 𝐶 ×𝐷.

Proof. By Lemma 3.1 (iii), we get 1 − 𝛽𝛾 = 1 ∈ 𝑃 . Therefore, by Theorem
2.2, Aut𝑐(𝐺) ≃ 𝐴𝐵𝐶𝐷,(︁

𝛼′ 𝛽′

𝛾′ 𝛿′

)︁(︁
𝛼 𝛽
𝛾 𝛿

)︁
=

(︁
𝛼′𝛼 𝛽 + 𝛽′

𝛾′ + 𝛾 𝛿′𝛿

)︁
.

Also, (︁
𝛼 𝛽
𝛾 𝛿

)︁(︁
𝛼′ 𝛽′

𝛾′ 𝛿′

)︁
=

(︁
𝛼𝛼′ 𝛽′ + 𝛽
𝛾 + 𝛾′ 𝛿𝛿′

)︁
.

Since 𝐴,𝐵,𝐶, and 𝐷 are abelian groups, we get(︁
𝛼′ 𝛽′

𝛾′ 𝛿′

)︁(︁
𝛼 𝛽
𝛾 𝛿

)︁
=

(︁
𝛼 𝛽
𝛾 𝛿

)︁(︁
𝛼′ 𝛽′

𝛾′ 𝛿′

)︁
.

Hence, A𝑐 is an abelian group and Aut𝑐(𝐺) ≃ A𝑐 ≃ 𝐴×𝐵 × 𝐶 ×𝐷. □

Now, we will find the structure of the group Aut𝑐(𝐺). For this, we first take 𝑡
such that gcd(𝑡,𝑚) = 1 and then we take 𝑡 such that gcd(𝑡,𝑚) > 1.

Theorem 3.2. Let 4 divide 𝑚 and 𝑡 be odd such that gcd(𝑡,𝑚) = 1. Then

Aut𝑐(𝐺) ≃

⎧⎨⎩
Z2 × Z2 × Z2 × Z2, if 2𝑡(𝑠 + 1) ≡ 0 (mod 𝑚)
Z2 × Z2, if 2𝑡(𝑠 + 1) ̸≡ 0 (mod 𝑚), gcd(𝑚, 𝑠 − 1) = 2
Z2 × Z2 × Z2, if 2𝑡(𝑠 + 1) ̸≡ 0 (mod 𝑚), gcd(𝑚, 𝑠 − 1) = 4 or 8.

Proof. Let gcd(𝑡,𝑚) = 1. By using (𝐺2) and (𝐺3), we get, 𝑠 ≡ −1 (mod 𝑚
4 )

and 𝑡 ≡ −1 (mod 𝑚
4 ), respectively. Thus 𝑠, 𝑡 ∈ { 𝑚

4 −1, 𝑚
2 −1, 3𝑚

4 −1,𝑚−1}. Note
that, if 𝑠 ∈ { 𝑚

2 − 1,𝑚− 1}, then 2𝑡(𝑠+ 1) ≡ 0 (mod 𝑚). Thus by Proposition 3.2,
we get 𝐴 ≃ 𝐵 ≃ 𝐶 ≃ Z2. Let gcd(𝑚, 𝑠− 1) = 𝑢. Since 𝑚 and 𝑠− 1 are even, 𝑢 is
even. Also, 𝑢 | 𝑚 and 𝑢 | 𝑠− 1. Therefore, 𝑢 | 𝑚− 2(𝑠− 1) = 2 or 4. If 𝑢 = 2, then
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by Proposition 3.1, we get Fix(𝜏) = {𝑎𝑙 | 𝑙 ≡ 0 (mod 𝑚
2 )} = {1, 𝑎𝑚

2 }. Let 𝛿 ∈ 𝑆.
Then 𝑎−1𝛿(𝑎) ∈ Fix(𝜏) = {1, 𝑎𝑚

2 } which implies that 𝛿(𝑎) ∈ {𝑎, 𝑎𝑚
2 +1}. Therefore,

𝐷 = ⟨𝛿⟩ ≃ Z2. If 𝑢 = 4, then 4 | 𝑚
2 − 2. Therefore, 𝑚

2 ≡ 2 (mod 4) and so 𝑚 = 4𝑛,
where 𝑛 ≡ 1 (mod 4). Then Fix(𝜏) = {𝑎𝑙 | 𝑙 ≡ 0 (mod 𝑚

4 )} = ⟨𝑎𝑚
4 ⟩ which implies

that 𝛿(𝑎) ∈ {𝑎, 𝑎𝑚
4 +1, 𝑎

𝑚
2 +1, 𝑎

3𝑚
4 +1}. Since 𝑚

4 + 1 is even, 𝛿(𝑎) ̸∈ {𝑎𝑚
4 +1, 𝑎

3𝑚
4 +1}.

Thus 𝐷 ≃ ⟨𝛿⟩ ≃ Z2. Hence, by Theorem 3.1, Aut𝑐(𝐺) ≃ Z2 × Z2 × Z2 × Z2.
Now, if 𝑠 ∈ { 𝑚

4 −1, 3𝑚
4 −1}, then 2𝑡(𝑠+1) ̸≡ 0 (mod 𝑚). Thus by Proposition

3.2, we get 𝐴 and 𝐵 are trivial groups and 𝐶 ≃ Z2. Let gcd(𝑚, 𝑠 − 1) = 𝑢. Then
𝑢 | 𝑚 and 𝑢 | 𝑠 − 1 = 𝑚

4 − 2 which implies that 𝑢 | 𝑚 − 4( 𝑚
4 − 2) = 8. Therefore,

𝑢 = 2 or 4 or 8.
Now, if 𝑢 = 2, then as above, we get 𝐷 ≃ Z2 and so, Aut𝑐(𝐺) ≃ Z2 × Z2.

If 𝑢 = 4, then by Proposition 3.1, we get Fix(𝜏) = {𝑎𝑙 | 𝑙 ≡ 0 (mod 𝑚
4 )} =

{1, 𝑎𝑚
4 , 𝑎

𝑚
2 , 𝑎

3𝑚
4 }. Thus, 𝛿(𝑎) ∈ {𝑎, 𝑎𝑚

4 +1, 𝑎
𝑚
2 +1, 𝑎

3𝑚
4 +1}. Note that,

(︀
𝑚
4 + 1

)︀2 =
1
2
(︀
2
(︀

𝑚
4 − 1

)︀2)︀
+ 𝑚. Therefore, using (𝐺1),

(︀
𝑚
4 + 1

)︀2 ≡ 1 (mod 𝑚). Thus, 𝐷 ≃
Z2 × Z2.

Now, let 𝑢 = 8. Then 8 | 𝑚
4 − 2 which implies that 𝑚

4 ≡ 2 (mod 8). Thus
𝑚 = 8𝑞, where 𝑞 ≡ 1 (mod 8). Since 𝑢 = 8, by Proposition 3.1, Fix(𝜏) = {𝑎𝑙 |
𝑙 ≡ 0 (mod 𝑚

8 )} = ⟨𝑎𝑚
8 ⟩ and so, 𝛿(𝑎) ∈ {𝑎, 𝑎𝑚

8 +1, 𝑎
𝑚
4 +1, 𝑎

3𝑚
8 +1, 𝑎

𝑚
2 +1, 𝑎

5𝑚
8 +1,

𝑎
3𝑚

4 +1, 𝑎
7𝑚

8 +1}. Since 𝑚
8 + 1 is even, 𝛿(𝑎) ̸∈ {𝑎𝑚

8 +1, 𝑎
3𝑚

8 +1, 𝑎 5𝑚
8 +1, 𝑎

7𝑚
8 +1}. Thus

𝐷 ≃ Z2 × Z2. Hence, by Theorem 3.1, we get

Aut𝑐(𝐺) ≃

{︃
Z2 × Z2, if gcd(𝑚, 𝑠− 1) = 2
Z2 × Z2 × Z2, if gcd(𝑚, 𝑠− 1) = 4 or 8.

□

Theorem 3.3. Let 𝑚 = 2𝑞, where 𝑞 > 1 is odd and gcd(𝑡,𝑚) = 1. Then,
Aut𝑐(𝐺) ≃ Z2 × Z2 × Z2 × Z2.

Proof. Using (𝐺1), (𝐺2), and (𝐺3), we get 𝑠, 𝑡 ∈
{︀

𝑚
2 − 1,𝑚− 1

}︀
. Then, the

result follows on the lines of the proof of Theorem 3.2. □

Now, we will discuss the structure of the automorphism group Aut(𝐺) in the
case when gcd(𝑡,𝑚) > 1.

Theorem 3.4. Let 𝑚 = 2𝑛, 𝑛 ⩾ 4 and 𝑡 be even. Then

Aut𝑐(𝐺) ≃

{︃
Z2 × Z2 × Z2 × Z2 × Z2𝑛−2 , if 2𝑡(𝑠+ 1) ≡ 0 (mod 𝑚)
Z2 × Z2 × Z2𝑛−2 , if 2𝑡(𝑠+ 1) ̸≡ 0 (mod 𝑚).

Proof. Let 𝑡 be even. Then 𝑡 + 1 is odd and gcd(𝑚, 𝑡 + 1) = 1. Therefore,
using (𝐺3), we get 𝑠 ≡ 1 (mod 2𝑛−1) that is, 𝑠 = 1, 2𝑛−1 + 1. Now, using (𝐺2),
we get 𝑡 ≡ 0 (mod 2𝑛−3). Therefore, 𝑡 ∈ {2𝑛−3, 2𝑛−2, 3 · 2𝑛−3, 2𝑛−1, 5 · 2𝑛−3, 3 ·
2𝑛−2, 7 · 2𝑛−3, 2𝑛}. Note that, for 𝑡 = 2𝑛−1 or 𝑡 = 2𝑛, 𝐺 is the semidirect product
of 𝐻 and 𝐾. Therefore, 𝑡 ∈ {2𝑛−3, 2𝑛−2, 3 · 2𝑛−3, 5 · 2𝑛−3, 3 · 2𝑛−2, 7 · 2𝑛−3}. Since
𝑠 ≡ 1 (mod 2𝑛−1), by Proposition 3.1, Fix(𝜏) = ⟨𝑎2⟩. Therefore, for 𝛿 ∈ 𝑆,
𝑎−1𝛿(𝑎) ∈ ⟨𝑎2⟩. Thus 𝛿(𝑎) = 𝑎𝑙, where 𝑙 is odd. Hence, 𝐷 ≃ 𝑈(2𝑛) ≃ Z2 × Z2𝑛−2 .

Note that, for 𝑡 = 2𝑛−2, 3 ·2𝑛−2, 2𝑡(𝑠+1) ≡ 0 (mod 𝑚). Therefore, by Proposi-
tion 3.2, 𝐴 ≃ 𝐵 ≃ 𝐶 ≃ Z2. Also, note that, for 𝑡 ∈ {2𝑛−3, 3 ·2𝑛−3, 5 ·2𝑛−3, 7 ·2𝑛−3},
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2𝑡(𝑠 + 1) ̸≡ 0 (mod 𝑚). Therefore, by Proposition 3.2, 𝐴 and 𝐵 are trivial and
𝐶 ≃ Z2. Hence, the result holds by Theorem 3.1. □

Theorem 3.5. Let 𝑚 = 4𝑞 and gcd(𝑡,𝑚) = 2𝑖𝑑, where 𝑞 > 1 is odd, 𝑖 ∈
{0, 1, 2}, and 𝑑 divides 𝑞. Then

(3.1) Aut𝑐(𝐺) ≃

⎧⎪⎨⎪⎩
Z2 × Z2 × Z2 × Z2, if 𝑑 = 1
Z2 × Z2 × Z2 × Z2 × 𝑈(𝑞), if 𝑑 = 𝑞

Z2 × Z2 × Z2 × Z2 × 𝑈(𝑑), if 1 < 𝑑 < 𝑞.

Proof. Let gcd(𝑡,𝑚) = 2𝑖𝑑, where 𝑖 ∈ {0, 1, 2}, and 𝑑 divides 𝑞. Then, using
(𝐺2), 𝑠 ≡ −1 (mod 𝑞

𝑑 ) which implies that 𝑠 = 𝑙 𝑞
𝑑 − 1, where 1 ⩽ 𝑙 ⩽ 4𝑑. Since

gcd(𝑠, 𝑚
2 ) = 1, 𝑠 is odd and so, 𝑙 is even. Using (𝐺1) and (𝐺3), we get 𝑙𝑞

2𝑑 − 1 ≡ 0
(mod 𝑑) and 𝑡 ≡ 𝑙𝑞

2𝑑 − 1 (mod 𝑞). Now, one can easily observe that 2𝑡(𝑠 + 1) ≡ 0
(mod 𝑚). Therefore, by Proposition 3.2, 𝐴 ≃ 𝐵 ≃ 𝐶 ≃ Z2. Let 𝛿 ∈ 𝑆. We have
three cases namely, 𝑑 = 1 or 𝑑 = 𝑞 or 1 < 𝑑 < 𝑞.

Case (i): Let 𝑑 = 1. Then 𝑠 = 2𝑞 − 1 and 𝑡 ∈ {𝑞 − 1, 2𝑞 − 1, 3𝑞 − 1}.
Clearly, 𝑠 ̸≡ 1 (mod 2𝑞) and gcd(4𝑞, 2𝑞 − 2) = 4. Therefore, by Proposition 3.1,
Fix(𝜏) = {1, 𝑎𝑞, 𝑎2𝑞, 𝑎3𝑞}. Since 𝛿 ∈ 𝑆 and 𝑞+ 1, 3𝑞+ 1 are even, 𝛿(𝑎) ∈ {𝑎, 𝑎2𝑞+1}.
Thus, 𝐷 ≃ Z2.

Case (ii): Let 𝑑 = 𝑞. Then 𝑠 = 2𝑞 + 1 and 𝑡 = 𝑞, otherwise the group 𝐺 will
be the semidirect product of groups. Therefore, by Proposition 3.1, Fix(𝜏) = ⟨𝑎2⟩.
Since 𝛿 ∈ 𝑆, 𝛿(𝑎) ∈ {𝑎𝑙 | 𝑙 ∈ 𝑈(4𝑞)}. Thus, 𝐷 ≃ 𝑈(4𝑞) ≃ Z2 × 𝑈(𝑞).

Case (iii): Let 1 < 𝑑 < 𝑞. Then 𝑠 = 𝑙𝑞
𝑑 − 1, 𝑙𝑞

2𝑑 − 1 ≡ 0 (mod 𝑑) and 𝑡 ≡ 𝑙𝑞
2𝑑 − 1

(mod 𝑞). Now, one can easily observe that 𝑠 ̸≡ 1 (mod 2𝑞) and

gcd(𝑚, 𝑠− 1) = gcd
(︁

4𝑞, 𝑙 𝑞
𝑑

− 2
)︁

= 2𝑑 or 4𝑑.

If gcd(𝑚, 𝑠 − 1) = 2𝑑, then by Proposition 3.1, Fix(𝜏) = ⟨𝑎
2𝑞
𝑑 ⟩ and so 𝛿(𝑎) ∈

{𝑎, 𝑎
2𝑞
𝑑 +1, . . . , 𝑎4𝑞− 2𝑞

𝑑 +1}. Clearly, for all 𝑖 ∈ {1, 2𝑞
𝑑 +1, . . . , 4𝑞− 2𝑞

𝑑 +1}, gcd( 𝑞
𝑑 , 𝑖) =

1. Therefore, 𝑖 ∈ 𝑈(4𝑞) if and only if 𝑖 ∈ 𝑈(4𝑑). Thus 𝐷 ≃ 𝑈(4𝑑) ≃ Z2 × 𝑈(𝑑). If
gcd(𝑚, 𝑠− 1) = 4𝑑, then using the similar argument, we get 𝐷 ≃ Z2 × 𝑈(𝑑).

Hence, combining all the cases (i)–(iii) and by Theorem 3.1, (3.1) holds. □

Theorem 3.6. Let 𝑚 = 2𝑞 and gcd(𝑡,𝑚) = 2𝑖𝑑, where 𝑞 > 1 is odd, 𝑖 ∈ {0, 1},
and 𝑑 divides 𝑞. Then Aut𝑐(𝐺) ≃ Z2 × Z2 × Z2 × 𝑈(𝑑).

Proof. The proof follows on the lines of the proof of Theorem 3.5. □

Theorem 3.7. Let 𝑚 = 2𝑛𝑞, 𝑡 be even and gcd(𝑚, 𝑡) = 2𝑖𝑑, where 1 ⩽ 𝑖 ⩽ 𝑛,
𝑛 ⩾ 3, 𝑞 > 1 is odd and 𝑑 divides 𝑞. Then

Aut𝑐(𝐺) ≃

{︃
Z2 × Z2 × Z2 × Z2 × Z2𝑛−2 × 𝑈(𝑑), if 2𝑡(𝑠+ 1) ≡ 0 (mod 𝑚)
Z2 × Z2 × Z2𝑛−2 × 𝑈(𝑑), if 2𝑡(𝑠+ 1) ̸≡ 0 (mod 𝑚).
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Proof. Case (i): Let 𝑑 = 𝑞. Then 𝑞 divides 𝑡 and 𝑡+ 1 is odd which implies
that gcd(𝑡+ 1,𝑚) = 1. Therefore, using (𝐺2) and (𝐺3), 𝑠 ≡ 1 (mod 𝑚

2 ) and 𝑡 ≡ 0
(mod 2𝑛−3𝑞). Hence, using the similar argument as in Theorem 3.4,

Aut𝑐(𝐺) ≃

{︃
Z2 × Z2 × Z2 × Z2 × Z2𝑛−2 × 𝑈(𝑞), if 2𝑡(𝑠+ 1) ≡ 0 (mod 𝑚)
Z2 × Z2 × Z2𝑛−2 × 𝑈(𝑞), if 2𝑡(𝑠+ 1) ̸≡ 0 (mod 𝑚).

Case (ii): Let 𝑑 ̸= 𝑞 and 𝑛 − 2 ⩽ 𝑖 ⩽ 𝑛. Then using (𝐺2), 𝑠 ≡ −1 (mod 𝑞
𝑑 ).

Thus 𝑠 = 𝑙 𝑞
𝑑 −1, where 1 ⩽ 𝑙 ⩽ 2𝑛𝑑. Since gcd(𝑠, 𝑚

2 ) = 1, 𝑠 is odd and so, 𝑙 is even.
Now, using (𝐺1), 𝑙

2
(︀

𝑙𝑞
2𝑑 −1

)︀
≡ 0 (mod 2𝑛−3𝑑) and by (𝐺3), 𝑡 ≡ 𝑙𝑞

2𝑑 −1 (mod 2𝑛−2𝑞).
Since 𝑡 is even, 𝑙

2 is odd. Also, one can easily observe that gcd( 𝑙
2 , 𝑑) = 1. Thus,

𝑙𝑞
2𝑑 ≡ 1 (mod 2𝑛−3𝑑) and 𝑡 ≡ 2𝑖𝑑 (mod 2𝑛−2𝑞). Clearly, 2𝑡(𝑠 + 1) ≡ 0 (mod 𝑚).
Therefore, by Proposition 3.2, 𝐴 ≃ 𝐵 ≃ 𝐶 ≃ Z2.

Since 𝑑 ̸= 𝑞, 𝑠 ̸≡ 1 (mod 𝑚
2 ). Also, gcd(𝑚, 𝑠−1) = gcd

(︀
2𝑛𝑞, 2

(︀
𝑙𝑞
2𝑑 −1

)︀)︀
= 2𝑛−1𝑑

or 2𝑛𝑑. Therefore, by Proposition 3.1, Fix(𝜏) = ⟨𝑎
2𝑞
𝑑 ⟩ or Fix(𝜏) = ⟨𝑎

𝑞
𝑑 ⟩. Let 𝛿 ∈ 𝑆.

Then, using the similar argument as in the proof of Theorem 3.5 Case(iii), we get
𝐷 ≃ 𝑈(2𝑛𝑑). Hence, by Theorem 3.1, Aut𝑐(𝐺) ≃ Z2 ×Z2 ×Z2 ×Z2 ×Z2𝑛−2 ×𝑈(𝑑).

Case (iii): Let 𝑑 ̸= 𝑞 and 𝑖 = 𝑛− 3. Then using (𝐺2), 𝑠 ≡ −1 (mod 2𝑞
𝑑 ), that

is, 𝑠 = 𝑙 2𝑞
𝑑 − 1, where 1 ⩽ 𝑙 ⩽ 2𝑛−1𝑑. Now, using (𝐺1) and (𝐺3), 𝑙(𝑙 𝑞

𝑑 − 1) ≡ 0
(mod 2𝑛−3𝑑) and (𝑡 + 1)(𝑙 𝑞

𝑑 − 1) ≡ 0 (mod 2𝑛−2𝑞). If 𝑙 is even, then 𝑡 ≡ 𝑙 𝑞
𝑑 − 1

(mod 2𝑛−2𝑞) gives that 𝑡 is odd, which is a contradiction. Therefore, 𝑙 is odd. Also,
one can easily observe that gcd(𝑙, 𝑑) = 1. Then, 𝑙 𝑞

𝑑 −1 = 2𝑛−3𝑑𝑙′ and 𝑠 = 2𝑛−2𝑑𝑙′+1,
where 1 ⩽ 𝑙′ ⩽ 8𝑞

𝑑 . Clearly, gcd(𝑙′, 𝑞
𝑑 ) = 1. Thus, (𝑡 + 1)𝑙′ ≡ 0 (mod 2𝑞

𝑑 ). If 𝑙′ is
odd, then (𝑡 + 1) ≡ 0 (mod 2𝑞

𝑑 ) which implies that 𝑡 is odd. So, 𝑙′ is even. Note
that, 2𝑡(𝑠 + 1) ̸≡ 0 (mod 𝑚). Therefore, by Proposition 3.2, 𝐴 and 𝐵 are trivial
and 𝐶 ≃ Z2.

Since 𝑑 ̸= 𝑞, 𝑠 ̸≡ 1 (mod 𝑚
2 ). Also, gcd(𝑚, 𝑠−1) = gcd(2𝑛𝑞, 2( 𝑙𝑞

𝑑 −1)) = 2𝑛−1𝑑
or 2𝑛𝑑. Then using the similar argument as in the Case (ii), we get 𝐷 ≃ 𝑈(2𝑛𝑑).
Hence, by Theorem 3.1, Aut𝑐(𝐺) ≃ Z2 × Z2 × Z2𝑛−2 × 𝑈(𝑑).

Note that, for 1 ⩽ 𝑖 ⩽ 𝑛 − 4, there is no group 𝐺 which is the Zappa–Szép
product of 𝐻 and 𝐾 (see [9, Theorem 3.11]). □

Theorem 3.8. Let 𝑚 = 2𝑛𝑞, 𝑡 be odd and gcd(𝑡,𝑚) = 𝑑, where 𝑛 ⩾ 4 and 𝑞 is
odd. Then

Aut𝑐(𝐺) ≃

{︃
Z2 × Z2 × Z2 × Z2 × 𝑈(𝑑), if 2𝑡(𝑠+ 1) ≡ 0 (mod 𝑚)
Z2 × Z2 × 𝑈(𝑑), if 2𝑡(𝑠+ 1) ̸≡ 0 (mod 𝑚).

Proof. Using (𝐺2), we have 𝑠 ≡ −1 (mod 2𝑛−2 𝑞
𝑑 ) which implies that 𝑠 =

𝑙2𝑛−2 𝑞
𝑑 − 1, where 1 ⩽ 𝑙 ⩽ 4𝑑. Since 𝑠 − 1 = 2(2𝑛−3 𝑙𝑞

𝑑 − 1) and 2𝑛−3 𝑙𝑞
𝑑 − 1 ̸≡ 0

(mod 2𝑛−2𝑞), 𝑠 ̸≡ 1 (mod 𝑚
2 ). Now, using (𝐺1), 𝑙(2𝑛−3 𝑙𝑞

𝑑 − 1) ≡ 0 (mod 𝑑). One
can easily observe that gcd(𝑙, 𝑑) = 1. Therefore, 2𝑛−3 𝑙𝑞

𝑑 −1 = 𝑑𝑙′, where 𝑙′ is odd and
gcd(𝑙′, 𝑞

𝑑 ) = 1. Therefore, gcd(𝑚, 𝑠 − 1) = 2𝑑 and so, Fix(𝜏) = ⟨2𝑛−1 𝑞
𝑑 ⟩. Now, let

𝛿 ∈ 𝑆. Then 𝑎−1𝛿(𝑎) ∈ ⟨2𝑛−1 𝑞
𝑑 ⟩ which implies that 𝛿(𝑎) ∈ {𝑎2𝑛−1𝑖 𝑞

𝑑 +1 | 1 ⩽ 𝑖 ⩽ 2𝑑}.
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Clearly, gcd(2𝑛−1𝑖 𝑞
𝑑 + 1, 𝑞

𝑑 ) = 1, for all 𝑖. Therefore, 𝛿(𝑎) = 𝑎2𝑛−1𝑖 𝑞
𝑑 +1 if and only

if gcd(2𝑛−1𝑖 𝑞
𝑑 + 1, 𝑑) = 1. Thus 𝐷 ≃ ⟨𝛿⟩ ≃ 𝑈(2𝑑) ≃ Z2 × 𝑈(𝑑).

Now, Using (𝐺3), we get

(3.2) (𝑡+ 1)
(︁ 𝑙𝑞
𝑑

2𝑛−3 − 1
)︁

≡ 0 (mod 2𝑛−2𝑞).

If 𝑙 is even, then by (3.2), 𝑡 ≡ 𝑙𝑞
𝑑 2𝑛−3 − 1 (mod 2𝑛−2𝑞). Note that, 2𝑡(𝑠+ 1) ≡

2𝑡(𝑙2𝑛−2 𝑞
𝑑 ) ≡ 0 (mod 𝑚). Therefore, by Proposition 3.2, 𝐴 ≃ 𝐵 ≃ 𝐶 ≃ Z2. Hence,

by Theorem 3.1, Aut𝑐(𝐺) ≃ Z2 × Z2 × Z2 × Z2 × 𝑈(𝑑).
If 𝑙 is odd, then using (3.2), (𝑡 + 1)𝑑𝑙′ ≡ 0 (mod 2𝑛−2𝑞) which implies that

𝑡 ≡ −1 (mod 2𝑛−2 𝑞
𝑑 ). Clearly, 2𝑡(𝑠+ 1) = 2𝑡(𝑙2𝑛−2 𝑞

𝑑 ) ̸≡ 0 (mod 𝑚). Therefore, by
Proposition 3.2, 𝐴,𝐵 are trivial and 𝐶 ≃ Z2. Hence, by Theorem 3.1, Aut𝑐(𝐺) ≃
Z2 × Z2 × 𝑈(𝑑). □

Theorem 3.9. Let 𝑚 = 8𝑞, 𝑡 be odd, and gcd(𝑡,𝑚) = 𝑑, where 𝑞 > 1 is odd.
Then

Aut𝑐(𝐺) ≃

{︃
Z2 × Z2 × Z2 × Z2 × 𝑈(𝑑), if 2𝑡(𝑠+ 1) ≡ 0 (mod 𝑚)
Z2 × Z2 × Z2 × 𝑈(𝑑), if 2𝑡(𝑠+ 1) ̸≡ 0 (mod 𝑚).

Proof. Using (𝐺2), we have 𝑠 ≡ −1 (mod 2 𝑞
𝑑 ) which implies that 𝑠 = 2𝑙 𝑞

𝑑 −1,
where 1 ⩽ 𝑙 ⩽ 4𝑑. Now, using (𝐺1), 𝑙

(︀
𝑙𝑞
𝑑 − 1

)︀
≡ 0 (mod 𝑑). Clearly, gcd(𝑙, 𝑑) = 1.

Therefore, 𝑙𝑞
𝑑 − 1 ≡ 0 (mod 𝑑). Using (𝐺3), we get

(3.3) (𝑡+ 1)
(︁ 𝑙𝑞
𝑑

− 1
)︁

≡ 0 (mod 2𝑞).

Case (i): If 𝑙 is even, then by (3.3), 𝑡 ≡ 𝑙𝑞
𝑑 −1 (mod 2𝑞). Note that, 2𝑡(𝑠+1) ≡

2𝑡
(︀
2 𝑙𝑞

𝑑

)︀
≡ 0 (mod 𝑚). Therefore, by Proposition 3.2, 𝐴 ≃ 𝐵 ≃ 𝐶 ≃ Z2. Now,

𝑠− 1 = 2
(︀

𝑙𝑞
𝑑 − 1

)︀
̸≡ 0 (mod 4𝑞). Also, one can easily observe that gcd(𝑚, 𝑠− 1) =

gcd
(︀
8𝑞, 2

(︀
𝑙𝑞
𝑑 − 1

)︀)︀
= 2𝑑. Therefore, Fix(𝜏) = ⟨𝑎

4𝑞
𝑑 ⟩. Let 𝛿 ∈ 𝑆. Then 𝑎−1𝛿(𝑎) ∈

⟨𝑎
4𝑞
𝑑 ⟩ which implies that 𝛿(𝑎) ∈ {𝑎

4𝑖𝑞
𝑑 +1 | 1 ⩽ 𝑖 ⩽ 2𝑑}. Clearly, gcd

(︀
𝑖, 4𝑞

𝑑

)︀
= 1,

for all 𝑖. Therefore, 𝛿(𝑎) = 𝑎2𝑛−1𝑖 𝑞
𝑑 +1 if and only if gcd(2𝑛−1𝑖 𝑞

𝑑 + 1, 𝑑) = 1. Thus
𝐷 ≃ ⟨𝛿⟩ ≃ 𝑈(2𝑑) ≃ Z2 ×𝑈(𝑑). Hence, by Theorem 3.1, Aut𝑐(𝐺) ≃ Z2 ×Z2 ×Z2 ×
Z2 × 𝑈(𝑑).

Case (ii): If 𝑙 is odd, then 𝑙𝑞
𝑑 − 1 ≡ 0 (mod 𝑑) which implies that 𝑙𝑞

𝑑 − 1 = 𝑑𝑙′,
where 𝑙′ is even and gcd(𝑙′, 𝑞

𝑑 ) = 1. Therefore, by the congruence relation (3.3),
𝑡 ≡ −1 (mod 𝑞

𝑑 ). Clearly, 2𝑡(𝑠 + 1) ̸≡ 0 (mod 𝑚). Therefore, by Proposition 3.2,
𝐴,𝐵 are trivial and 𝐶 ≃ Z2. Let 𝛿 ∈ 𝑆. One can easily observe that 𝑠 ≡ 1
(mod 𝑚

2 ) if and only if 𝑑 = 𝑞. In this case, 𝐷 ≃ 𝑈(8𝑞) ≃ Z2 × Z2 × 𝑈(𝑞).

Let 𝑑 ̸= 𝑞. Then 𝑠 ̸≡ 1 (mod 𝑚
2 ). Now, gcd(𝑚, 𝑠 − 1) = gcd(8𝑞, 2( 𝑙𝑞

𝑑 − 1)) =
gcd(8𝑞, 2𝑑𝑙′) = 4𝑑 or 8𝑑. Then using the similar argument as in the proof of
Theorem 3.7, we get 𝐷 ≃ 𝑈(8𝑑) ≃ Z2 × Z2 × 𝑈(𝑑). Hence, by Theorem 3.1,
Aut𝑐(𝐺) ≃ Z2 × Z2 × Z2 × 𝑈(𝑑). □
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4. Aut𝑐(Z𝑝2 ◁▷ Z𝑚), 𝑝 is an odd prime

In [13], Yacoub classified the groups which are Zappa–Szép products of cyclic
groups of order 𝑚 and order 𝑝2, where 𝑝 is an odd prime (see [13, Conclusion]) as
follows.

𝑀1 = ⟨𝑎, 𝑏 | 𝑎𝑚 = 1 = 𝑏𝑝2
, 𝑎𝑏 = 𝑏𝑎𝑢, 𝑢𝑝2

≡ 1 (mod 𝑚)⟩,

𝑀2 = ⟨𝑎, 𝑏 | 𝑎𝑚 = 1 = 𝑏𝑝2
, 𝑎𝑏 = 𝑏𝑡𝑎, 𝑡𝑚 ≡ 1 (mod 𝑝2)⟩,

𝑀3 = ⟨𝑎, 𝑏 | 𝑎𝑚 = 1 = 𝑏𝑝2
, 𝑎𝑏 = 𝑏𝑡𝑎𝑝𝑟+1, 𝑎𝑝𝑏 = 𝑏𝑎𝑝(𝑝𝑟+1)⟩,

and in 𝑀3, 𝑝 divides 𝑚. The groups 𝑀1 and 𝑀2 may be isomorphic to the group
𝑀3 depending on the values of 𝑚, 𝑟 and 𝑡. Clearly, 𝑀1 and 𝑀2 are semidirect
products. Throughout this section 𝐺 will denote the group 𝑀3 and we will be only
concerned about groups 𝑀3 which are Zappa–Szép products but not a semidirect
product. Let 𝐻 = ⟨𝑏⟩, 𝐾 = ⟨𝑎⟩ and the mutual actions of 𝐻 and 𝐾 are defined by
𝜎𝑎(𝑏) = 𝑏𝑡, 𝜏𝑏(𝑎) = 𝑎𝑝𝑟+1 along with 𝜎𝑎𝑝(𝑏) = 𝑏 and 𝜏𝑏(𝑎𝑝) = 𝑎𝑝(𝑝𝑟+1), where 𝑡 and
𝑟 are integers satisfying the conditions

(G1) gcd(𝑡− 1, 𝑝2) = 𝑝, that is, 𝑡 = 1 + 𝜆𝑝, where gcd(𝜆, 𝑝) = 1,
(G2) gcd(𝑟, 𝑝) = 1,
(G3) 𝑝(𝑝𝑟 + 1)𝑝 ≡ 𝑝 (mod 𝑚).

Proposition 4.1. Let 𝐺 be as above. Then 𝑍(𝐺) = ker(𝜏) Fix(𝜏), where

ker(𝜏) =
{︃

⟨𝑏𝑝⟩, if (𝑝𝑟 + 1)𝑝 ≡ 1 (mod 𝑚)
{1}, if (𝑝𝑟 + 1)𝑝 ̸≡ 1 (mod 𝑚)

and Fix(𝜏) =
{︃

⟨𝑎
𝑚
𝑝 ⟩, if 𝑝2 | 𝑚

{1}, if 𝑝2 ∤ 𝑚.

Proof. Using [9, Lemma 4.2], if 𝑎𝑙 ∈ ker(𝜎), then for all 𝑗, we have 𝑏𝑗𝑡𝑙 = 𝑏𝑗

which implies that 𝑗(1 + 𝑝𝜆)𝑙 ≡ 𝑗 (mod 𝑝2). Thus 𝑗𝑝𝑙𝜆 ≡ 0 (mod 𝑝2) and so, 𝑙 ≡ 0
(mod 𝑝). Therefore, ker(𝜎) = ⟨𝑎𝑝⟩. Now, let 𝑏𝑗 ∈ Fix(𝜎). Then using the similar
argument we have 𝑗 ≡ 0 (mod 𝑝). Thus Fix(𝜎) = ⟨𝑏𝑝⟩.

Now, let 𝑏𝑗 ∈ ker(𝜏). Then by Lemma [9, Lemma 4.2], for all 𝑙, we have

(4.1) 𝑎
𝑗𝑙(𝑙−1)

2 ((𝑝𝑟+1)𝜆𝑝−1)+𝑙(𝑝𝑟+1)𝑗

= 𝑎𝑙.

Note that, if 𝑏𝑗 ∈ 𝐻* ⩽ Fix(𝜎), then 𝑗 ≡ 0 (mod 𝑝). Therefore, for 𝑗 ≡ 0 (mod 𝑝),
using (G3), (4.1) holds if and only if (𝑝𝑟 + 1)𝑝 ≡ 1 (mod 𝑚). Thus

𝐻* = ker(𝜏) =
{︃

⟨𝑏𝑝⟩, if (𝑝𝑟 + 1)𝑝 ≡ 1 (mod 𝑚)
{1}, if (𝑝𝑟 + 1)𝑝 ̸≡ 1 (mod 𝑚).

Now, let 𝑎𝑙 ∈ Fix(𝜏). Then for all 𝑗, (4.1) holds if and only if 𝑙 ≡ 0 (mod 𝑚
𝑝 ) and

𝑝2 divides 𝑚. Then

𝐾* = Fix(𝜏) =
{︃

⟨𝑎
𝑚
𝑝 ⟩, if 𝑝2 | 𝑚

{1}, if 𝑝2 ∤ 𝑚.
□
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Proposition 4.2. Let 𝐺 be the group as above. Then

(i) 𝐴 ≃

{︃
Z𝑝, if (𝑝𝑟 + 1)𝑝 ≡ 1 (mod 𝑚)
{1}, if (𝑝𝑟 + 1)𝑝 ̸≡ 1 (mod 𝑚),

(iii) 𝐶 ≃

{︃
Z𝑝, if 𝑝2 | 𝑚
{1}, if 𝑝2 ∤ 𝑚 ,

(ii) 𝐵 ≃

{︃
Z𝑝, if (𝑝𝑟 + 1)𝑝 ≡ 1 (mod 𝑚)
{1}, if (𝑝𝑟 + 1)𝑝 ̸≡ 1 (mod 𝑚),

(iv) 𝐷 ≃

{︃
Z𝑝, if 𝑝2 | 𝑚
{1}, if 𝑝2 ∤ 𝑚 .

Proof. (i) Let 𝛼 ∈ 𝑃 be defined by 𝛼(𝑏) = 𝑏𝑖, where 0 ⩽ 𝑖 ⩽ 𝑝2 − 1
and gcd(𝑝, 𝑖) = 1. Clearly, 𝜎𝑎(𝛼(𝑏)) = 𝛼(𝜎𝑎(𝑏)). Now, by Proposition 4.1, we
get 𝑏−1𝛼(𝑏) ∈ ker(𝜏). Then, 𝛼(𝑏) = 𝑏, if (𝑝𝑟 + 1)𝑝 ̸≡ 1 (mod 𝑚) and 𝛼(𝑏) ∈
{𝑏, 𝑏𝑝+1, 𝑏2𝑝+1, . . . , 𝑏(𝑝−1)𝑝+1} if (𝑝𝑟 + 1)𝑝 ≡ 1 (mod 𝑚). Hence, (i) holds.

(ii) Let 𝛽 ∈ 𝑄. Then by Proposition 4.1, Im(𝛽) ⩽ 𝐻* = ker(𝜏). Also, one can
easily observe that 𝛽(𝑎) = 𝛽(𝜏𝑏(𝑎)). Hence, by Proposition 4.1, (ii) holds.

(iii) Let 𝛾 ∈ 𝑅. Then by Proposition 4.1, Im(𝛾) ⩽ 𝐾* = Fix(𝜏). Clearly,
𝛾(𝜎𝑎(𝑏)) = 𝛾(𝑏). Hence, by Proposition 4.1, (iii) holds.

(iv) Let 𝛿 ∈ 𝑆 be defined by 𝛿(𝑎) = 𝑎𝑗 , where gcd(𝑗,𝑚) = 1. Then 𝑎−1𝛿(𝑎) ∈
𝐾* = Fix(𝜏). Thus, by Proposition 4.1, 𝛿(𝑎) = 𝑎, if 𝑝2 ∤ 𝑚 and 𝛿(𝑎) ∈ {𝑎

𝑚
𝑝 𝑢+ 1 |

0 ⩽ 𝑢 ⩽ 𝑝 − 1}, if 𝑝2 | 𝑚. Also, one can easily check that 𝜏𝑏(𝛿(𝑎)) = 𝛿(𝜏𝑏(𝑎)).
Hence, (iv) holds. □

Lemma 4.1. Let 𝛼 ∈ 𝑃 , 𝛽 ∈ 𝑄, 𝛾 ∈ 𝑅 and 𝛿 ∈ 𝑆. Then
(i) 𝛼𝛽 = 𝛽 = 𝛽𝛿, (ii) 𝛾𝛼 = 𝛾 = 𝛿𝛾, (iii) 𝛽𝛾 = 0 = 𝛾𝛽.

Proof. The proof is similar to the proof of Lemma 3.1. □

Theorem 4.1. Let 𝐴,𝐵,𝐶 and 𝐷 be defined as above. Then Aut𝑐(𝐺) ≃ 𝐴 ×
𝐵 × 𝐶 ×𝐷.

Proof. The proof follows using a similar argument as in the proof of Theorem
3.1. □

Theorem 4.2. Let 𝐺 be the group defined as above. Then

Aut𝑐(𝐺) ≃

⎧⎪⎨⎪⎩
Z𝑝 × Z𝑝 × Z𝑝 × Z𝑝, if (𝑝𝑟 + 1)𝑝 ≡ 1 (mod 𝑚) and 𝑝2 | 𝑚
Z𝑝 × Z𝑝, if (𝑝𝑟 + 1)𝑝 ≡ 1 (mod 𝑚) or 𝑝2 | 𝑚
{1}, otherwise.

Proof. The proof follows from Proposition 4.2 and Theorem 4.1. □
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