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DOMAIN OF THE CESÀRO MEAN
OF ORDER α IN MADDOX’S SPACE ℓ(p)

Medine Yeşilkayagil Savaşcı and Feyzi Başar

Abstract. The sequence space ℓ(p) was defined by I. J. Maddox, Spaces of

strongly summable sequences, Quart. J. Math. Oxford (2), 18 (1967), 345–
355. Here, we introduce the paranormed Cesàro sequence space ℓ(Cα, p) of
order α, of non-absolute type as the domain of Cesàro mean Cα of order α

and prove that the spaces ℓ(Cα, p) and ℓ(p) are linearly paranorm isomorphic.
Besides this, we compute the α-, β- and γ-duals of the space ℓ(Cα, p) and
construct the basis of the space ℓ(Cα, p) together with the characterization of
the classes of matrix transformations from the space ℓ(Cα, p) into the spaces
ℓ∞ of bounded sequences and f of almost convergent sequences, and any given
sequence space Y , and from a given sequence space Y into the sequence space
ℓ(Cα, p). Finally, we emphasize on some geometric properties of the space
ℓ(Cα, p).

1. Introduction

We denote the space of all sequences of complex entries by ω. Any vector
subspace of ω is called a sequence space. We shall write ℓ∞, c and c0 for the spaces
of all bounded, convergent and null sequences, respectively. Also by bs, cs, ℓ1 and
ℓp, we denote the spaces of all bounded, convergent, absolutely and p-absolutely
convergent series, respectively.

A linear topological space X over the real field R is said to be a paranormed
space if there is a subadditive function g : X → R such that g(θ) = 0, g(x) = g(−x)
and scalar multiplication is continuous, i.e., |αn − α| → 0 and g(xn − x) → 0 imply
g(αnxn − αx) → 0 for all α’s in R and all x’s in X , where θ is the zero vector
in the linear space X . Assume here and after that (pk) be a bounded sequence of
strictly positive real numbers with sup pk = H and M = max{1, H}. Then, the
linear space ℓ(p) was defined by Maddox in [17] (see also Nakano [21] and Simons
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[24]), as follows:

ℓ(p) =

{

x = (xk) ∈ ω :
∑

k

|xk|pk < ∞

}

with 0 < pk 6 H < ∞

which is a complete space paranormed by

g1(x) =

(

∑

k

|xk|pk

)1/M

.

For simplicity in notation, here and in what follows, the summation without limits
runs from 0 to ∞. We shall assume throughout that p−1

k + (p′

k)−1 = 1 provided
1 < inf pk 6 H < ∞ and denote the collection of all finite subsets of N by F, where
N = {0, 1, 2, . . .}.

The multiplier space S(X, Y ) of the sequence spaces X and Y is defined by

(1.1) S(X, Y ) = {z = (zk) ∈ ω : xz = (xkzk) ∈ Y for all x ∈ X}.

With the notation of (1.1), the α-, β- and γ-duals Xα, Xβ and Xγ of a sequence
space X are defined by Xα = S(X, ℓ1), Xβ = S(X, cs), and Xγ = S(X, bs).

If a sequence space X paranormed by g contains a sequence (bk) with the
property that for every x ∈ X there is a unique sequence of scalars (αk) such that
limn→∞ g

(

x−
∑n

k=0 αkbk

)

= 0, then (bk) is called a Schauder basis (or briefly basis)
for X . The series

∑

k αkbk which has the sum x is then called the expansion of x
with respect to (bk) and written as x =

∑

k αkbk.
Let X , Y be any two sequence spaces and A = (ank) be an infinite matrix

of complex numbers ank, where k, n ∈ N. Then, we say that A defines a matrix

transformation from X into Y and denote it by writing A : X → Y , if for every
sequence x = (xk) ∈ X the sequence Ax = {(Ax)n}, the A-transform of x, is in Y ;
where

(1.2) (Ax)n =
∑

k

ankxk for each n ∈ N.

By (X : Y ), we denote the class of all matrices A such that A : X → Y . Thus,
A ∈ (X : Y ) if and only if the series on the right side of (1.2) converges for each
n ∈ N and every x ∈ X , and we have Ax ∈ Y for all x ∈ X . Also, we write
An = (ank)k∈N for the sequence in the n-th row of A.

Let α ∈ R with α > −1. The Cesàro matrix of order α or, in short, the

Cα-matrix is defined by the matrix Cα = (c
(α)
nk ) which is given by

c
(α)
nk =







(n−k+α−1

n−k )
(n+α

n )
, 0 6 k 6 n,

0, otherwise

for all n, k ∈ N. Then, the inverse C−1
α = (c̃

(α)
nk ) of the Cα-matrix is determined by

c̃
(α)
nk =

{

(

n−k−α−1
n−k

)(

k+α
k

)

, max{0, n − α} 6 k 6 n,

0, k > n
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for all n, k ∈ N, where α ∈ N. We should note here that the reader can refer to
Malkowsky and Rakocevic [19, pp. 28–44] for some details related to the Cesàro
methods of order greater than -1.

1.1. The spaces f and f0. Now, we may give a short survey on the concept
of almost convergence which is a generalization of the ordinary convergence. Banach
[3] proved the existence of a functional L on the space ℓ∞ satisfying the following
conditions for all x, y ∈ ℓ∞ and all scalars λ and µ:

(i) L(λx + µy) = λL(x) + µL(y).
(ii) xk > 0 for all k ∈ N implies L((xk)∞

k=0) > 0.
(iii) L((xn+k)∞

k=0) = L((xk)∞

k=0) for all n ∈ N.
(iv) L(e) = 1, where e = (1, 1, 1, . . . , 1, . . . ).

Lorentz [16] defined a Banach limit to be any functional on ℓ∞ satisfying the
conditions in (i)–(iv), and a sequence x = (xk) ∈ ℓ∞ is said to be almost convergent
to the generalized limit α if all Banach limits of x are coincide and are equal to
α, [16]. This is denoted by f-lim xk = α. The shift operator P is defined on ω by
Pn(x) = xn+1 for all n ∈ N. Let P i be the composition of P with itself i times and
write for a sequence x = (xk)

tmn(x) =
1

m + 1

m
∑

i=0

P i
n(x) for all m, n ∈ N.

Lorentz [16] proved that f-lim xk = α if and only if limm→∞ tmn(x) = α, uniformly
in n. It is well-known that a convergent sequence is almost convergent such that
its ordinary and generalized limits are equal. For more detail on the Banach limit,
the reader may refer to Çolak and Çakar [11], and Das [12]. Therefore, we define
the spaces f0 and f of almost null and almost convergent sequences by

f0 :=

{

x = (xk) ∈ ℓ∞ : lim
m→∞

m
∑

k=0

xn+k

m + 1
= 0 uniformly in n

}

,

f :=

{

x = (xk) ∈ ℓ∞ : ∃α ∈ C such that lim
m→∞

m
∑

k=0

xn+k

m + 1
= α uniformly in n

}

.

One can easily see that the inclusions c0 ⊂ f0, c ⊂ f , and f0 ⊂ f are strictly hold.

2. The Cesàro sequence space ℓ(Cα, p) of order α

In this section, we define the Cesàro sequence space ℓ(Cα, p) and prove that
ℓ(Cα, p) is linearly isomorphic to the space ℓ(p), where 0 < pk 6 H < ∞ for all
k ∈ N. Finally, we give the basis for the space ℓ(Cα, p).

Let X be any sequence space. Then, the domain XA of an infinite matrix A in
X is defined by

(2.1) XA = {x = (xk) ∈ ω : Ax ∈ X}.

In [10], Choudhary and Mishra have defined the sequence space ℓ(p) consisting of
all sequences whose B-transforms are in the space ℓ(p), where B = (bnk) is defined
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by

bnk =

{

1, 0 6 k 6 n

0, k > n

for all k, n ∈ N. Başar and Altay [6] have examined the space bs(p) which is
formerly defined by Başar [5] as the set of all series whose sequences of partial

sums are in the space ℓ∞(p). With the notation of (2.1), the spaces ℓ(p) and bs(p)
can be redefined by

ℓ(p) = [ℓ(p)]B and bs(p) = [ℓ∞(p)]B.

In [7], Başar and Altay defined the sequence space rq(p) consisting of all se-
quences whose Rq-transforms are in the space ℓ(p), where Rq = (rq

nk) is the matrix
of Riesz mean, that is

rq(p) = {ℓ(p)}Rq and rq
p = (ℓp)Rq .

In [25], Wang defined the sequence space Xa(p) consisting of all sequences
whose N t-transforms are in ℓp and is a Banach space with the norm

‖x‖p =

( ∞
∑

k=0

∣

∣

∣

∣

1

Tk

k
∑

j=0

tk−jxj

∣

∣

∣

∣

p)1/p

with 1 6 p < ∞.

Yeşilkayagil and Başar [26, 27] have defined the sequence space N t(p) con-
sisting of all sequences whose Nörlund transforms are in the space ℓ(p), where
N t = (at

nk) is the matrix of the Nörlund mean, that is

N t(p) = {ℓ(p)}Nt.

Also, Aydın and Başar [1, 2], Başar et al. [8] and Nergiz and Başar [22] gave the
domain of some triangle matrices in the sequence space ℓ(p). The reader can refer
to the monographs [4] and [20] for the background on the normed and paranormed
sequence spaces, and summability theory and related topics.

Now, we introduce the Cesàro sequence space ℓ(Cα, p) of order α defined by

ℓ(Cα, p) :=

{

x = (xk) ∈ ω :
∑

k

∣

∣

∣

∣

1
(

k+α
k

)

k
∑

j=0

(

k − j + α − 1

k − j

)

xj

∣

∣

∣

∣

pk

< ∞

}

with 0 < pk 6 H < ∞.

It is natural that this space may be also defined with the notation of (2.1) that
ℓ(Cα, p) = {ℓ(p)}Cα

.
Define the sequence y = (yk), which will be frequently used, by the Cα-

transform of a sequence x = (xk), i.e.,

(2.2) yk = (Cαx)k =
1

(

k+α
k

)

k
∑

j=0

(

k − j + α − 1

k − j

)

xj for all k ∈ N.
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Theorem 2.1. ℓ(Cα, p) is a complete linear metric space paranormed by g2

defined by

g2(x) =

(

∑

k

∣

∣

∣

∣

1
(

k+α
k

)

k
∑

j=0

(

k − j + α − 1

k − j

)

xj

∣

∣

∣

∣

pk
)1/M

Proof. Since this can be shown by a routine verification, we omit details. �

Remark 2.1. One can easily see that the absolute property does not hold on
the space ℓ(Cα, p), that is g2(x) 6= g2(|x|) for at least one sequence in the space
ℓ(Cα, p) and this says that ℓ(Cα, p) is a sequence space of non-absolute type; where
|x| = (|xk|).

Theorem 2.2. The Cesàro sequence space of order α, ℓ(Cα, p) of non-absolute

type is linearly isomorphic to the space ℓ(p), where 0 < pk 6 H < ∞ for all k ∈ N.

Proof. To prove the theorem, we should show the existence of a linear bi-
jection between the spaces ℓ(Cα, p) and ℓ(p) for 0 < pk 6 H < ∞. Consider the
transformation T defined, with the notation of (2.2),

T : ℓ(Cα, p) → ℓ(p), x 7→ T x = y.

The linearity of T is clear. Further, it is trivial that x = θ whenever T x = θ and
hence T is injective.

Let us take any y ∈ ℓ(p) and define the sequence x = (xk) by

(2.3) xk = (C̃αy)k =

k
∑

j=0

(

k − j − α − 1

k − j

)(

j + α

j

)

yj,

for all k ∈ N, where max{0, k − α} 6 j. Then, we have

g2(x) =

(

∑

k

∣

∣

∣

∣

1
(

k+α
k

)

k
∑

j=0

(

k − j + α − 1

k − j

)

xj

∣

∣

∣

∣

pk
)1/M

=

(

∑

k

∣

∣

∣

∣

1
(

k+α
k

)

k
∑

j=0

(

k − j + α − 1

k − j

) j
∑

i=0

(

j − i − α − 1

j − i

)(

i + α

i

)

yi

∣

∣

∣

∣

pk
)1/M

=

(

∑

k

|yk|pk

)1/M

= g1(y) < ∞.

This means that x ∈ ℓ(Cα, p). Consequently, T is surjective and is paranorm
preserving. Hence, T is a linear bijection and this says us that the spaces ℓ(Cα, p)
and ℓ(p) are linearly paranorm isomorphic. �

We determine the basis for the paranormed space ℓ(Cα, p).
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Theorem 2.3. Define the sequence b(k)(α) = {b
(k)
n (α)}n∈N of the elements of

the space ℓ(Cα, p) for every fixed k ∈ N by

(2.4) b(k)
n (α) =

{

(

n−k−α−1
n−k

)(

k+α
k

)

, max{0, n − α} 6 k 6 n,

0, otherwise.

Then, the sequence {b(k)(α)}k∈N is a basis for the space ℓ(Cα, p) and any x ∈
ℓ(Cα, p) has a unique representation of the form

(2.5) x =
∑

k

λk(α)b(k)(α),

where λk(α) = (Cαx)k for all k ∈ N and 0 < pk 6 H < ∞.

Proof. It is clear that {b(k)(α)} ⊂ ℓ(Cα, p), since

(2.6) Cαb(k)(α) = e(k) ∈ ℓ(p) for all k ∈ N,

where e(k) is the sequence whose only non-zero term is a 1 in the k-th place for
each k ∈ N and 0 < pk 6 H < ∞.

Let x ∈ ℓ(Cα, p) be given. For every non-negative integer m, we put

(2.7) x[m] =

m
∑

k=0

λk(α)b(k)(α).

Then, we obtain by applying Cα to (2.7) with (2.6) that

Cαx[m] =

m
∑

k=0

λk(α)Cαb(k)(α) =

m
∑

k=0

(Cαx)ke(k),

{

Cα(x − x[m])
}

i
=

{

0, 0 6 i 6 m,

(Cαx)i, i > m,

where i, m ∈ N. Given ε > 0, then there is an integer m0 such that
[ ∞

∑

i=m+1

|(Cαx)i|
pk

]1/M

< ε

for all (m + 1) > m0. Hence,

g2
[

Cα(x − x[m])
]

=

[ ∞
∑

i=m+1

|(Cαx)i|
pk

]1/M

6

[ ∞
∑

i=m0

|(Cαx)i|
pk

]1/M

< ε

for all (m + 1) > m0 which proves that x ∈ ℓ(Cα, p) is represented as in (2.5).
Let us show the uniqueness of the representation for x ∈ ℓ(Cα, p) given by (2.5).

Suppose, on the contrary, that there exists a representation x =
∑

k µk(α)b(k)(α).
Since the linear transformation T , from ℓ(Cα, p) to ℓ(p), used in the proof of The-
orem 2.2 is continuous we have at this stage that

(Cαx)l =
∑

k

µk(α)
{

Cαb(k)(α)
}

l
=

∑

k

µk(α)e
(k)
l = µl(α)



DOMAIN OF THE CESÀRO MEAN OF ORDER... 25

for all l ∈ N which contradicts the fact that (Cαx)l = λl(α) for all l ∈ N. Hence,
the representation (2.5) of x ∈ ℓ(Cα, p) is unique. �

3. The α-, β- and γ-duals of the space ℓ(Cα, p)

In this section, we determine the α-, β-and γ-duals of the space ℓ(Cα, p). Firstly,
we quote some lemmas which are needed in proving our theorems.

Lemma 3.1. [14, Theorem 5.1.0] The following statements hold:

(i) Let 1 < pk 6 H < ∞ for every k ∈ N. Then, A ∈ (ℓ(p) : ℓ1) if and only if

there exists an integer B > 1 such that

sup
N∈F

∑

k

∣

∣

∣

∣

∑

n∈N

ankB−1

∣

∣

∣

∣

p′

k

< ∞.

(ii) Let 0 < pk 6 1 for every k ∈ N. Then, A ∈ (ℓ(p) : ℓ1) if and only if

sup
N∈F

sup
k∈N

∣

∣

∣

∣

∑

n∈N

ank

∣

∣

∣

∣

pk

< ∞.

Lemma 3.2. [15, Theorem 1] The following statements hold:

(i) Let 1 < pk 6 H < ∞ for every k ∈ N. Then, A ∈ (ℓ(p) : ℓ∞) if and only if

there exists an integer B > 1 such that

(3.1) sup
n∈N

∑

k

|ankB−1|p
′

k < ∞.

(ii) Let 0 < pk 6 1 for every k ∈ N. Then, A ∈ (ℓ(p) : ℓ∞) if and only if

(3.2) sup
n,k∈N

|ank|pk < ∞.

Lemma 3.3. [15, Theorem 1] Let 0 < pk 6 H < ∞ for every k ∈ N. Then,

A ∈ (ℓ(p) : c) if and only if (3.1), (3.2) hold and there is βk ∈ C such that ank → βk

for each k ∈ N, as n → ∞.

Theorem 3.1. Let 1 < pk 6 H < ∞ for every k ∈ N, max{0, n − α} 6 k and
max{0, j − α} 6 k. Then, define the sets D1(p), D2(p) and D3(p) as follows:

D1(p) :=
⋃

B>1

{

a = (ak) ∈ ω : sup
N∈F

∑

k

∣

∣

∣

∣

∑

n∈N

(

n − k − α − 1

n − k

)(

k + α

k

)

anB
−1

∣

∣

∣

∣

p′

k

< ∞

}

,

D2(p) :=
⋃

B>1

{

a = (ak) ∈ ω : sup
n∈N

∑

k

∣

∣

∣

∣

n
∑

j=k

(

j − k − α − 1

j − k

)(

k + α

k

)

ajB
−1

∣

∣

∣

∣

p′

k

< ∞

}

,

D3(p) :=
⋃

B>1

{

a = (ak) ∈ ω : lim
n→∞

n
∑

j=k

(

j − k − α − 1

j − k

)(

k + α

k

)

aj exists

}

.

Then, the following statements hold:

(i) {ℓ(Cα, p)}α = D1(p). (ii) {ℓ(Cα, p)}γ = D2(p).

(iii) {ℓ(Cα, p)}β = D2(p) ∩ D3(p).
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Proof. (i) Let us take a = (an) ∈ ω. We easily derive with (2.3) that

(3.3) anxn =
n

∑

k=0

(

n − k − α − 1

n − k

)(

k + α

k

)

anyk = (Bαy)n for all n ∈ N,

where Bα = (b
(α)
nk ) is defined by

b
(α)
nk =

{

(

n−k−α−1
n−k

)(

k+α
k

)

an, max{0, n − α} 6 k 6 n,

0, k > n

for all n, k ∈ N. Thus, we observe by combining (3.3) with part (i) of Lemma
3.1 that ax = (anxn) ∈ ℓ1 whenever x = (xn) ∈ ℓ(Cα, p) if and only if Bαy ∈ ℓ1

whenever y = (yn) ∈ ℓ(p). This gives the desired result that {ℓ(Cα, p)}α = D1(p).

(ii) Consider the equality

n
∑

k=0

akxk =

n
∑

k=0

k
∑

j=0

(

k − j − α − 1

k − j

)(

j + α

j

)

akyj(3.4)

=

n
∑

k=0

n
∑

j=k

(

j − k − α − 1

j − k

)(

k + α

k

)

ajyk

= (Eαy)n

for all n ∈ N, where Eα = (e
(α)
nk ) is defined by

e
(α)
nk =

{

∑n
j=k

(

j−k−α−1
j−k

)(

k+α
k

)

aj , max{0, j − α} 6 k 6 n,

0, k > n

for all n, k ∈ N. Thus, we deduce from part (i) of Lemma 3.2 with (3.4) that
ax = (akxk) ∈ bs whenever x = (xk) ∈ ℓ(Cα, p) if and only if Eαy ∈ ℓ∞ whenever
y = (yk) ∈ ℓ(p). Therefore, we obtain from part (i) of Lemma 3.2 that {ℓ(Cα, p)}γ =
D2(p).

(iii) We see from Lemma 3.3 that ax = (akxk) ∈ cs whenever x = (xk) ∈ ℓ(Cα, p)
if and only if Eαy ∈ c whenever y = (yk) ∈ ℓ(p). Therefore, we derive that
{ℓ(Cα, p)}β = D2(p) ∩ D3(p). �

Theorem 3.2. Let 0 < pk 6 1 for every k ∈ N. Define the sets D4(p) and

D5(p) by

D4(p) :=

{

a = (ak) ∈ ω : sup
N∈F

sup
k∈N

∣

∣

∣

∣

∑

n∈N

(

n − k − α − 1

n − k

)(

k + α

k

)

an

∣

∣

∣

∣

pk

< ∞

}

,

D5(p) :=

{

a = (ak) ∈ ω : sup
n,k∈N

∣

∣

∣

∣

n
∑

j=k

(

j − k − α − 1

j − k

)(

k + α

k

)

aj

∣

∣

∣

∣

pk

< ∞

}

.

Then, the following statements hold:

(i) {ℓ(Cα, p)}α = D4(p). (ii) {ℓ(Cα, p)}γ = D5(p).

(iii) {ℓ(Cα, p)}β = D3(p) ∩ D4(p).
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Proof. This is easily obtained by proceeding as in the proof of Theorem 3.1,
by using Lemma 3.3 and the second parts of Lemmas 3.1, 3.2 instead of the first
parts. So, we omit details. �

4. Some matrix transformations related to the sequence space ℓ(Cα, p)

In the present section, we characterize the classes (ℓ(Cα, p) : ℓ∞), (ℓ(Cα, p) : f),
(ℓ(Cα, p) : Y ) and (Y : ℓ(Cα, p)) of matrix transformations, where Y denotes any
given sequence space. Since YA

∼= Y for any triangle A and any sequence space Y ,
it is trivial that the equivalence ”x ∈ YA if and only if y = Ax ∈ Y ” holds.

For simplicity in notation, in this section we use the notation

a(n, k, m) =
1

m + 1

m
∑

i=0

an+i,k

for all n, k, m ∈ N. Throughout this section, we assume that the entries of the

infinite matrices A = (ank) and Fα = (f
(α)
nk ) are connected with the relation

(4.1) f
(α)
nk :=

∞
∑

j=k

(

j − k − α − 1

j − k

)(

k + α

k

)

anj

for all n, k ∈ N, where max{0, j − α} 6 k.

Theorem 4.1. The following statements hold:

(i) Let 0 < pk 6 1 for all k ∈ N. Then, A = (ank) ∈ (ℓ(Cα, p) : ℓ∞) if and only if

(4.2) sup
n,k∈N

∣

∣f
(α)
nk

∣

∣

pk < ∞.

(ii) Let 1 < pk < ∞ for all k ∈ N. Then, A = (ank) ∈ (ℓ(Cα, p) : ℓ∞) if and only if

(4.3) C(B) = sup
n∈N

∑

k

∣

∣f
(α)
nk B−1

∣

∣

p′

k < ∞ for all B > 1.

Proof. (i) Suppose that the condition (4.2) holds, and x = (xk) ∈ ℓ(Cα, p).
This implies the fact that An = (ank)k∈N ∈ [ℓ(Cα, p)]β for each n ∈ N and the
product FαCα exists. Hence, the A-transform Ax of x exists. Then, we derive the
following relation from the mth partial sum of the series

∑

k ankxk that

m
∑

k=0

ankxk =

m
∑

k=0

ank

[ k
∑

j=0

(

k − j − α − 1

k − j

)(

j + α

j

)

yj

]

(4.4)

=

m
∑

k=0

m
∑

j=k

(

j − k − α − 1

j − k

)(

k + α

k

)

anjyk

for all m ∈ N. Therefore, by passing to limit as m → ∞ in (4.4) we obtain the
consequence that

(Ax)n =
∑

k

ankxk =
∑

k

[ ∞
∑

j=k

(

j − k − α − 1

j − k

)(

k + α

k

)

anj

]

yk(4.5)
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=
∑

k

f
(α)
nk yk =

(

Fαy
)

n

for all n ∈ N. In this situation, since condition (3.2) of part (ii) of Lemma 3.2 is
fulfilled by the matrix Fα, we conclude that Ax = Fαy ∈ ℓ∞. Hence, the condition
is sufficient.

Conversely, suppose that A = (ank) ∈ (ℓ(Cα, p) : ℓ∞). Then, Ax exists and is
in the space ℓ∞ for all x ∈ ℓ(Cα, p). This gives that An = (ank)k∈N ∈ [ℓ(Cα, p)]β

for each n ∈ N which shows the necessity of (4.2).
(ii) Suppose that condition (4.3) holds, and x = (xk) ∈ ℓ(Cα, p). Then, Ax

exists and we again have relation (4.5) by following the same way in proving part
(i), above. Now, consider the following inequality (see [15]) which holds for any
B > 0 and α, β ∈ C that

(4.6) |αβ| 6 B[|αB−1|p
′

+ |β|p] with p > 1.

Therefore, we observe by combining (4.5) and inequality (4.6) that

sup
n∈N

∣

∣

∣

∣

∑

k

ankxk

∣

∣

∣

∣

6 sup
n∈N

∑

k

∣

∣f
(α)
nk

∣

∣|yk| 6 B[C(B) + g1(y)] < ∞

which means that A ∈ (ℓ(Cα, p) : ℓ∞).
Conversely, let us suppose that A = (ank) ∈ (ℓ(Cα, p) : ℓ∞). Then, Ax exists

and belongs to the space ℓ∞ for all x ∈ ℓ(Cα, p). This yields that An = (ank)k∈N ∈
[ℓ(Cα, p)]β for each n ∈ N which shows the necessity of (4.3). �

Theorem 4.2. A = (ank) ∈ (ℓ(Cα, p) : f) if and only if conditions (4.2) and

(4.3) hold, and

αk ∈ C ∋ lim
m→∞

1

m + 1

m
∑

r=0

∞
∑

j=k

(

j − k − α − 1

j − k

)(

k + α

k

)

an+r,j = αk(4.7)

uniformly in n, for all k ∈ N.

Proof. Since the theorem can be proved for 0 < pk 6 1 by a similar way, to
avoid the repetition of the similar statements, we only consider the case 1 < pk < ∞.

Let A = (ank) ∈ ℓ(Cα, p) : f) with 1 < pk < ∞. Then, Ax exists and is in
the space f for all x ∈ ℓ(Cα, p). Since the inclusion f ⊂ ℓ∞ holds, the necessity of
condition (4.3) follows from Theorem 4.1.

Besides, one can conclude for x = b(k)(α) = {b
(k)
n (α)} ∈ ℓ(Cα, p) defined by

(2.4) that

Ax =

{ ∞
∑

j=k

(

j − k − α − 1

j − k

)(

k + α

k

)

anj

}

n∈N

belongs to the space f for each k ∈ N. This gives the necessity of condition (4.7).
Conversely, suppose that conditions (4.3) and (4.7) hold, and take any x =

(xk) ∈ ℓ(Cα, p). Then, since An = (ank)k∈N ∈ [ℓ(Cα, p)]β for each n ∈ N, Ax exists.
Therefore, we again have relation (4.5) by following the same way in proving part
(i), above. Since the series

∑

∞

k=0 ankxk is convergent by the hypothesis, the series
∑

∞

k=0

[
∑

∞

j=k

(

j−k−α−1
j−k

)(

k+α
k

)

anj

]

yk is also convergent. Therefore, we have from
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(4.7) that |f (α)(n, k, m)|p
′

k → |αk|p
′

k , as m → ∞, uniformly in n for each k ∈ N

which leads with (4.3) that the inequality

i
∑

k=0

|αk|p
′

k 6 sup
n,m∈N

∞
∑

k=0

|f (α)(n, k, m)|p
′

k = C < ∞

holds for every i ∈ N. That is, (αk) ∈ ℓ(p′). Since x ∈ ℓ(Cα, p) by the hypothesis
and ℓ(Cα, p) ∼= ℓ(p), y = (yk) ∈ ℓ(p). Therefore, we see by applying Hölder’s
inequality that

∑

∞

k=0 |αkyk| < ∞ for all y ∈ ℓ(p). For any given ε > 0, choose a
fixed k0 ∈ N such that

( ∞
∑

k=k0+1

|yk|pk

)1/pk

<
ε

4C1/q
.

Then, there is some m0 ∈ N by (4.7) such that
∣

∣

∑k0

k=0[f (α)(n, k, m) − αk]yk

∣

∣ < ε/2
for every m > m0, uniformly in n. Therefore, we see by applying Hölder’s inequality
that

∣

∣

∣

∣

1

m + 1

m
∑

i=0

(Fαy)n+i −

∞
∑

k=0

αkyk

∣

∣

∣

∣

6

∣

∣

∣

∣

k0
∑

k=0

[f (α)(n, k, m) − αk]yk

∣

∣

∣

∣

+

∣

∣

∣

∣

∞
∑

k=k0+1

[f (α)(n, k, m) − αk]yk

∣

∣

∣

∣

<
ε

2
+

{ ∞
∑

k=k0+1

[|f (α)(n, k, m)| + |αk|]p
′

k

}1/p′

k
( ∞

∑

k=k0+1

|yk|pk

)1/pk

<
ε

2
+ 2C1/p′

k
ε

4C1/p′

k

= ε

for all sufficiently large m uniformly in n. Hence, Fαy ∈ f which leads to the fact
that Ax ∈ f , as desired. That is to say that the conditions (4.3) and (4.7) are
sufficient.

This step completes the proof of the theorem for the case 1 < pk < ∞. �

If we replace the space f0 with the space f , then Theorem 4.2 is reduced to
the following:

Corollary 4.1. Let A = (ank) be an infinite matrix. Then, A ∈ (ℓ(Cα, p) : f0)
if and only if (4.2) and (4.3) hold, and (4.7) also holds with αk = 0 for all k ∈ N.

If we replace the spaces c and c0 with the spaces f and f0, then Theorem 4.2
and Corollary 4.1 are respectively reduced to the following:

Corollary 4.2. Let A = (ank) be an infinite matrix. Then, the following

statements hold:

(i) A ∈ (ℓ(Cα, p) : c) if and only if (4.2) and (4.3) hold, and

(4.8) ∃αk ∈ C such that lim
n→∞

f
(α)
nk = αk for each fixed k ∈ N.
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(ii) A ∈ (ℓ(Cα, p) : c0) if and only if (4.2) and (4.3) hold, and (4.8) also holds

with αk = 0 for all k ∈ N.

By combining Theorems 4.1 and 4.2 with Corollaries 4.1 and 4.2, the following
results are derived for the characterization of some matrix classes concerning with
the Cesàro sequence spaces ℓ(Cα, p) of order α:

Corollary 4.3. Let the entries of the infinite matrices A = (ank) and Fα =

(f
(α)
nk ) are connected with the relation (4.1), and a(n, k) =

∑n
i=0 aik for all n, k ∈ N.

Then, the following statements hold:

(i) Let 0 < pk 6 1 for all k ∈ N. Then, A = (ank) ∈ (ℓ(Cα, p) : bs) if and only if

(4.2) holds with a(n, k) instead of ank.

(ii) Let 1 < pk < ∞ for all k ∈ N. Then, A = (ank) ∈ (ℓ(Cα, p) : bs) if and only

if (4.3) holds with a(n, k) instead of ank.

(iii) Let 0 < pk 6 1 for all k ∈ N. Then, A = (ank) ∈ (ℓ(Cα, p) : fs) if and only if

(4.2) and (4.7) hold with a(n, k) instead of ank, where fs denotes the space

of all series whose sequence of partial sums are in the space f .

(iv) Let 1 < pk < ∞ for all k ∈ N. Then, A = (ank) ∈ (ℓ(Cα, p) : fs) if and only

if (4.3) and (4.7) hold with a(n, k) instead of ank.

(v) Let 0 < pk 6 1 for all k ∈ N. Then, A = (ank) ∈ (ℓ(Cα, p) : fs0) if and

only if (4.2) holds and (4.7) also holds with αk = 0 for all k ∈ N with a(n, k)
instead of ank, where fs0 denotes the space of all series whose sequence of

partial sums are in the space f0.

(vi) Let 1 < pk < ∞ for all k ∈ N. Then, A = (ank) ∈ (ℓ(Cα, p) : fs0) if and

only if (4.3) holds and (4.7) also holds with αk = 0 for all k ∈ N with a(n, k)
instead of ank.

(vii) Let 0 < pk 6 1 for all k ∈ N. Then, A ∈ (ℓ(Cα, p) : cs) if and only if (4.2)
and (4.8) hold with a(n, k) instead of ank.

(viii) Let 1 < pk < ∞ for all k ∈ N. Then, A ∈ (ℓ(Cα, p) : cs) if and only if (4.3)
and (4.8) hold with a(n, k) instead of ank.

(ix) Let 0 < pk 6 1 for all k ∈ N. Then, A ∈ (ℓ(Cα, p) : cs0) if and only if (4.2)
holds and (4.8) also holds with αk = 0 for all k ∈ N with a(n, k) instead of

ank, where cs0 denotes the space of all series whose sequence of partial sums

are in the space c0.

(x) Let 1 < pk < ∞ for all k ∈ N. Then, A ∈ (ℓ(Cα, p) : cs0) if and only if (4.3)
holds and (4.8) also holds with αk = 0 for all k ∈ N with αk = 0 for all k ∈ N

with a(n, k) instead of ank.

In order to be able to characterize the classes of matrix transformations from
the space ℓ(Cα, p) to the any given sequence space Y and conversely from the any
given sequence space Y to the space ℓ(Cα, p), we give the following two theorems:

Theorem 4.3. Suppose that the entries of the infinite matrices A = (ank) and

Fα = (f
(α)
nk ) are connected with the relation (4.1) for all k, n ∈ N and Y be any

given sequence space. Then, A ∈ (ℓ(Cα, p) : Y ) if and only if An ∈ {ℓ(Cα, p)}β for

all n ∈ N and Fα ∈ (ℓ(p) : Y ).
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Proof. Let Y be any given sequence space. Suppose that (4.1) holds between

the entries of the matrices A = (ank) and Fα = (f
(α)
nk ), and take into account that

the spaces ℓ(Cα, p) and ℓ(p) are linearly paranorm isomorphic.
Let A ∈ (ℓ(Cα, p) : Y ) and take any y ∈ ℓ(p). Then,

(FαCα)nk =

∞
∑

i=k

f
(α)
ni c

(α)
ik =

∞
∑

i=k

∞
∑

j=i

(

j − i − α − 1

j − i

)(

i − k + α − 1

i − k

)

anj = ank,

i.e., FαCα exists and An ∈ {ℓ(Cα, p)}β which yields that (Fα)n ∈ ℓ1 for each n ∈ N.
Hence, Fαy exists and thus

∑

k

f
(α)
nk yk =

∑

k

∞
∑

j=k

(

j − k − α − 1

j − k

)(

k + α

k

)

anj

[

1
(

k+α
k

)

k
∑

i=0

(

k − i + α − 1

k − i

)

xi

]

=
∑

k

∞
∑

j=k

(

j − k − α − 1

j − k

)

anj

k
∑

i=0

(

k − i + α − 1

k − i

)

xi =
∑

k

ankxk

for all n ∈ N. So, we derive that Fαy = Ax, which leads us to the consequence
Fα ∈ (ℓ(p) : Y ).

Conversely, let An ∈ {ℓ(Cα, p)}β for each n ∈ N and Fα ∈ (ℓ(p) : Y ), and take
x = (xk) ∈ ℓ(Cα, p). Then, Ax exists. Therefore, we again obtain the relation
(4.5) by following the same way used in the proof of part (i) of Theorem 4.1 for all
n ∈ N, i.e., Ax = Fαy and this shows that A ∈ (ℓ(Cα, p) : Y ). �

By changing the roles of the spaces ℓ(Cα, p) with Y in Theorem 4.3, we have:

Theorem 4.4. Suppose that Y be any given sequence space and the entries of

the infinite matrices A = (ank) and Gα = (g
(α)
nk ) are connected with the relation

g
(α)
nk =

1
(

n+α
n

)

n
∑

j=0

(

n − j + α − 1

n − j

)

ajk

for all n, k ∈ N. Then, A ∈ (Y : ℓ(Cα, p)) if and only if Gα ∈ (Y : ℓ(p)).

Proof. Let s = (sk) ∈ Y and consider the following equality

(4.9)
1

(

n+α
n

)

n
∑

j=0

(

n − j + α − 1

n − j

) m
∑

k=0

ajksk

=

m
∑

k=0

1
(

n+α
n

)

n
∑

j=0

(

n − j + α − 1

n − j

)

ajksk

=

m
∑

k=0

g
(α)
nk sk for all n ∈ N.

Then, by letting m → ∞ in (4.9) we have {Cα(As)}n = (Gαs)n for all n ∈ N. Since
As ∈ ℓ(Cα, p), Cα(As) = Gαs ∈ ℓ(p). �
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5. The rotundity of the space ℓ(Cα, p)

In functional analysis, the rotundity of Banach spaces is one of the most im-
portant geometric property. For details, the reader may refer to [9, 13, 18]. In
this section, we give the necessary and sufficient condition in order to the space
ℓ(Cα, p) be rotund and present some results related to this concept.

Definition 5.1. Let S(X) be the unit sphere of a Banach space X . Then, a
point x ∈ S(X) is called an extreme point if 2x = y + z implies y = z for every
y, z ∈ S(X). A Banach space X is said to be rotund (strictly convex) if every point
of S(X) is an extreme point.

Definition 5.2. A Banach space X is said to have Kadec–Klee property (or
property (H)) if every weakly convergent sequence on the unit sphere is convergent
in norm.

Definition 5.3. A Banach space X is said to have

(i) the Opial property if every sequence (xn) weakly convergent to x0 ∈ X satis-
fies

lim inf
n→∞

‖xn − x0‖ < lim inf
n→∞

‖xn + x‖

for every x ∈ X with x 6= x0.
(ii) the uniform Opial property if for each ε > 0, there exists an r > 0 such that

1 + r 6 lim inf
n→∞

‖xn + x‖

for each x ∈ X with ‖x‖ > ε and each sequence (xn) in X such that xn
w
−→ 0

and lim infn→∞ ‖xn‖ > 1.

Definition 5.4. Let X be a real vector space. A functional σ : X → [0, ∞) is
called a modular if

(i) σ(x) = 0 if and only if x = θ;
(ii) σ(ηx) = σ(x) for all scalars η with |η| = 1;
(iii) σ(ηx + βy) 6 σ(x) + σ(y) for all x, y ∈ X and η, β > 0 with η + β = 1;
(iv) the modular σ is called convex if σ(ηx + βy) 6 ησ(x) + βσ(y) for all x, y ∈ X

and η, β > 0 with η + β = 1;

A modular σ on X is called

(a) right continuous if limη→1+ σ(ηx) = σ(x) for all x ∈ Xσ.
(b) left continuous if limη→1− σ(ηx) = σ(x) for all x ∈ Xσ.
(c) continuous if it is both right and left continuous, where

Xσ =
{

x ∈ X : lim
η→0+

σ(ηx) = 0
}

.

We define σp on ℓ(Cα, p) by

σp(x) =
∑

k

∣

∣

∣

∣

1
(

k+α
k

)

k
∑

j=0

(

k − j + α − 1

k − j

)

xj

∣

∣

∣

∣

pk

.
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If pk > 1 for all positive integer k, by the convexity of the function t 7→ |t|pk for
each k, σp is a convex modular on ℓ(Cα, p). We consider ℓ(Cα, p) equipped with
Luxemburg norm given by

(5.1) ‖x‖ = inf{η > 0 : σp(x/η) 6 1}.

ℓ(Cα, p) is a Banach space with this norm. This can be showed by the similar way
used in the proof of Theorem 7 in [22].

We establish some basic properties for the modular σp.

Proposition 5.1. The modular σp on ℓ(Cα, p) satisfies the following properties

with pk > 1 for all positive integer k:

(i) If 0 < η 6 1, then ηMσp(x/η) 6 σp(x) and σp(ηx) 6 ησp(x).
(ii) If η > 1, then σp(x) 6 ηM σp(x/η).
(iii) If η > 1, then σp(x) > ησp(x/η).
(iv) The modular σp is continuous.

Proof. (i) Let 0 < η 6 1. Then ηM/ηpk 6 1 for all pk > 1. So, we have

ηM σp(x/η) =
∑

k

ηM

ηpk

∣

∣

∣

∣

1
(

k+α
k

)

k
∑

j=0

(

k − j + α − 1

k − j

)

xj

∣

∣

∣

∣

pk

6
∑

k

∣

∣

∣

∣

1
(

k+α
k

)

k
∑

j=0

(

k − j + α − 1

k − j

)

xj

∣

∣

∣

∣

pk

= σp(x),

σp(ηx) =
∑

k

ηpk

∣

∣

∣

∣

1
(

k+α
k

)

k
∑

j=0

(

k − j + α − 1

k − j

)

xj

∣

∣

∣

∣

pk

6 η
∑

k

∣

∣

∣

∣

1
(

k+α
k

)

k
∑

j=0

(

k − j + α − 1

k − j

)

xj

∣

∣

∣

∣

pk

= ησp(x).

(ii) Let η > 1. Then 1 6 ηM /ηpk for all pk > 1. So, we have

σp(x) 6
ηM

ηpk
σp(x) = ηM σp(x/η).

(iii) Let η > 1. Then η/ηpk 6 1 for all pk > 1. Therefore, one can easily see that

σp(x) =
∑

k

∣

∣

∣

∣

1
(

k+α
k

)

k
∑

j=0

(

k − j + α − 1

k − j

)

xj

∣

∣

∣

∣

pk

>
∑

k

η

ηpk

∣

∣

∣

∣

1
(

k+α
k

)

k
∑

j=0

(

k − j + α − 1

k − j

)

xj

∣

∣

∣

∣

pk

= ησp

(

x/η
)

.

(iv) If η > 1, then we have

∑

k

η

∣

∣

∣

∣

1
(

k+α
k

)

k
∑

j=0

(

k − j + α − 1

k − j

)

xj

∣

∣

∣

∣

pk

6
∑

k

ηpk

∣

∣

∣

∣

1
(

k+α
k

)

k
∑

j=0

(

k − j + α − 1

k − j

)

xj

∣

∣

∣

∣

pk
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6
∑

k

ηM

∣

∣

∣

∣

1
(

k+α
k

)

k
∑

j=0

(

k − j + α − 1

k − j

)

xj

∣

∣

∣

∣

pk

,

that is to say that

(5.2) ησp(x) 6 σp(ηx) 6 ηM σp(x).

By passing to limit as η → 1+ in (5.2), we have limη→1+ σp(ηx) = σp(x). Hence,
σp is right continuous.

If 0 < η < 1, we have

∑

k

ηM

∣

∣

∣

∣

1
(

k+α
k

)

k
∑

j=0

(

k − j + α − 1

k − j

)

xj

∣

∣

∣

∣

pk

6
∑

k

ηpk

∣

∣

∣

∣

1
(

k+α
k

)

k
∑

j=0

(

k − j + α − 1

k − j

)

xj

∣

∣

∣

∣

pk

6
∑

k

η

∣

∣

∣

∣

1
(

k+α
k

)

k
∑

j=0

(

k − j + α − 1

k − j

)

xj

∣

∣

∣

∣

pk

,

that is

(5.3) ηM σp(x) 6 σp(ηx) 6 ησp(x).

By letting η → 1− in (5.3), we have limη→1− σp(ηx) = σp(x). Hence, σp is left
continuous. Since σp is both right and left continuous, it is continuous. �

Now, we give some relationships between the modular σp and the Luxemburg
norm on ℓ(Cα, p).

Proposition 5.2. For any x ∈ ℓ(Cα, p), the following statements hold:

(i) If ‖x‖ < 1, then σp(x) 6 ‖x‖.

(ii) If ‖x‖ > 1, then σp(x) > ‖x‖.

(iii) ‖x‖ = 1 if and only if σp(x) = 1.

(iv) ‖x‖ < 1 if and only if σp(x) < 1.

(v) ‖x‖ > 1 if and only if σp(x) > 1.

(vi) If 0 < η < 1 and ‖x‖ > η, then σp(x) > ηM .

(vii) If η > 1 and ‖x‖ < η, then σp(x) < ηM .

Proof. Let x ∈ ℓ(Cα, p).

(i) Let ε > 0 such that 0 < ε < 1 − ‖x‖. By the definition of ‖ · ‖ in (5.1), there
exists an η > 0 such that ‖x‖ + ε > η and σp(x/η) 6 1. So, we have

σp(x) 6
∑

k

(‖x‖ + ε

η

)pk

∣

∣

∣

∣

1
(

k+α
k

)

k
∑

j=0

(

k − j + α − 1

k − j

)

xj

∣

∣

∣

∣

pk

(5.4)

6 (‖x‖ + ε)σp(x/η) 6 ‖x‖ + ε

Since ε is arbitrary, we have σp(x) 6 ‖x‖ from (5.4).

(ii) If we choose ε > 0 such that 0 < ε < 1 − 1/‖x‖, then 1 < (1 − ε)‖x‖ < ‖x‖. By
the definition of ‖ · ‖ in (5.1) and part (iii) of Proposition 5.1, we have

1 < σp

[ x

(1 − ε)‖x‖

]

6
1

(1 − ε)‖x‖
σp(x).
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So, (1 − ε)‖x‖ < ‖x‖ for all ε ∈ (0, 1 − (1/‖x‖)). This implies that ‖x‖ < σp(x)

(iii) Since σp is continuous by Theorem 1.4 of [18], we directly have (iii).

(iv) This follows from parts (i) and (iii).

(v) This follows from parts (ii) and (iii). (vi) This follows from part (ii) and part

(i) of Proposition 5.1.

(vii) This follows from part (i) and part (ii) of Proposition 5.1. �

Theorem 5.1. The space ℓ(Cα, p) is rotund if only if pk > 1 for all k ∈ N.

Proof. Let ℓ(Cα, p) be rotund and choose k ∈ N such that pk = 1 for all
k < 3. Consider the sequences x = (xk) and u = (uk) given by

xk := (−1)k

(

α

k

)

and uk :=

{

(−1)k+1
(

α+1
1

)(

α
k−1

)

, k > 1,

0, k = 0

Then, obviously x 6= u and

σp(x) = σp(u) = σp

(x + u

2

)

= 1

By part (iii) of Proposition 5.2, x, u, (x + u)/2 ∈ S[ℓ(Cα, p)] which leads us to the
contradiction that the sequence space ℓ(Cα, p) is not rotund. Hence, pk > 1 for all
k ∈ N.

Conversely, let x ∈ S[ℓ(Cα, p)] and v, z ∈ S[ℓ(Cα, p)] with x = (v + z)/2. By
convexity of σp and part (iii) of Proposition 5.2, we have

1 = σp(x) 6
σp(v) + σp(z)

2
= 1,

which gives that

(5.5) σp(x) =
σp(v) + σp(z)

2
.

Also, since x = (v + z)/2 and from (5.5) we obtain that

∑

k

∣

∣

∣

∣

1
(

k+α
k

)

k
∑

j=0

(

k − j + α − 1

k − j

)

(vj + zj)

2

∣

∣

∣

∣

pk

=
1

2

∑

k

∣

∣

∣

∣

1
(

k+α
k

)

k
∑

j=0

(

k − j + α − 1

k − j

)

vj

∣

∣

∣

∣

pk

+
1

2

∑

k

∣

∣

∣

∣

1
(

k+α
k

)

k
∑

j=0

(

k − j + α − 1

k − j

)

zj

∣

∣

∣

∣

pk

.

This implies that

(5.6)
∣

∣

∣

vj + zj

2

∣

∣

∣

pk

=
|vj |pk + |zj |pk

2

for all k ∈ N. Since the function t → |t|pk is strictly convex for all k ∈ N, it follows
by (5.6) that vk = zk for all k ∈ N. Hence, v = z. That is, ℓ(Cα, p) is rotund. �
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Theorem 5.2. Let (xk) be a sequence in ℓ(Cα, p). Then, the following state-

ments hold:

(i) limk→∞ ‖xk‖ = 1 implies limk→∞ σp(xk) = 1.

(ii) limk→∞ σp(xk) = 0 implies limk→∞ ‖xk‖ = 0.

Proof. This is easily obtained by following the proof of Theorem 10
in [22]. �

Theorem 5.3. Let x ∈ ℓ(Cα, p) and (x(j)) ⊂ ℓ(Cα, p). If σp(x(j)) → σp(x) as

n → ∞ and x
(j)
k → xk as n → ∞ for all k ∈ N, then x(j) → x as j → ∞.

Proof. Let ε > 0 be given. Since x ∈ ℓ(Cα, p) and (x(j)) ⊂ ℓ(Cα, p), σp(x(j) −

x) =
∑

k |{Cα(x(j) − x)}k|pk < ∞. So, there exists an k0 ∈ N such that

(5.7)

∞
∑

k=k0+1

∣

∣

{

Cα(x(j) − x)
}

k

∣

∣

pk <
ε

2
.

Also, since x
(j)
k → xk, we have

(5.8)

k0
∑

k=1

∣

∣

{

Cα(x(j) − x)
}

k

∣

∣

pk <
ε

2
.

Therefore, we obtain from (5.7) and (5.8) that σp(x(j) − x) < ε. This means that

σp(x(j) − x) → 0, as j → ∞. This result implies ‖x(j) − x‖ → 0, as j → ∞ from
part (ii) of Theorem 5.2. Hence, xk → x as k → ∞. �

Theorem 5.4. The sequence space ℓ(Cα, p) has the Kadec–Klee property.

Proof. Let x ∈ S[ℓ(Cα, p)] and (x(j)) ⊂ ℓ(Cα, p) such that ‖x(j)‖ → 1 and

x(j) w
−→ x are given. By part (i) of Theorem 5.2, we have σp(x(j)) → 1, as n → ∞.

Also, x ∈ S[ℓ(Cα, p)] implies ‖x‖ = 1. By part (iii) of Proposition 5.2, we obtain
σp(x) = 1. Therefore, we have σp(x(j)) → σp(x), as n → ∞.

Since x(j) w
−→ x and qk : ℓ(Cα, p) → R or C) defined by qk(x) = xk is continuous,

x
(j)
k → xk, as j → ∞. Therefore, x(j) → x, as j → ∞. �

Theorem 5.5. For any 1 < p < ∞, the space Xa(p) has the uniform Opial

property.

Proof. Since the proof can be given by the similar way used in proving The-
orem 13 of Nergiz and Başar [22], we omit details. �

Conclusion

Wang introduced the sequence space Xa(p), in [25]. Although the domain of
several triangle matrices in the classical sequence spaces ℓp, c0, c and ℓ∞ and in
the Maddox spaces ℓ(p), c0(p), c(p) and ℓ∞(p) were investigated by researchers, we
introduce the Cesàro sequence space ℓ(Cα, p) of order α and prove that the spaces
ℓ(Cα, p) and ℓ(p) are linearly paranorm isomorphic. Furthermore, we give the α-,
β-and γ-duals of the space ℓ(Cα, p) and characterize the classes (ℓ(Cα, p) : ℓ∞),
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(ℓ(Cα, p) : f), (ℓ(Cα, p) : Y ) and (Y : ℓ(Cα, p)) of infinite matrices, where Y is
any given sequence space. Finally, we investigate some geometric properties of the
space ℓ(Cα, p).

It is clear that by depending the choice of the sequence space Y , the charac-
terization of several classes of matrix transformations from the space ℓ(Cα, p) and
into the space ℓ(Cα, p) can be obtained from Theorems 4.3 and 4.4, respectively.
Since pk = p for all k ∈ N our space ℓ(Cα, p) is reduced to the space ℓp(Cα), our
results are more general and more comprehensive than the corresponding results
given by Roopaei and Başar [23]. As a natural continuation of this paper, one can
study the domains ℓ∞(Cα, p), c(Cα, p) and c0(Cα, p) of the Cesàro mean of order
α in the Maddox’s spaces ℓ∞(p), c(p) and c0(p), respectively.

Acknowldgement. The authors express their sincere thanks and appreciation
to Professor Eberhard Malkowsky, who reported the inverse of the Cα matrix for
α ∈ N, with the personal request of the second author.
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