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A GENERIC REFINEMENT TO THE
CAUCHY-SCHWARZ INEQUALITY

Mohammad Masjed-Jamei

ABSTRACT. We present a generic refinement to the Cauchy—Schwarz inequality
in both inner product space and probability space and study some of its special
cases.

1. Introduction

The inner product of two real-valued continuous functions f, g with respect to
the weight function w positive on [a, b], is indicated as

b
(11) (f9) = [ w@)f(@)glo) do
while in a discrete space it is in the form
(1.2) (f,9)w = Y w(@)f(2) g(x),
zeB

where B is a given counter set.
Based on two representations (1), (L2, the well-known Cauchy—Schwartz

inequality
(13) <fag>12u g <f7f>’w<gvg>w7

can be represented in a continuous space as

(1.4) ( / bw(w)f(:v)g(:v)dw)2< / " w(e) (@) da / " w(e)g? (@) da,

and in a discrete space as

(1.5) <Z w(z)f(x) g(z)) <Y w@)fi(z) Y w() g ().

x€EB zeB zeB
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Inequalities (I4) and (LX) play an important role in various branches of mod-
ern mathematics such as Hilbert spaces theory, classical real and complex anal-
ysis, numerical analysis, probability and statistics, qualitative theory of differen-
tial equations and their applications. To date, a large number of generalizations
and refinements of these inequalities have been investigated in the literature, see,
e.g. [IH6L8L10].

Here, we establish a generic refinement to the Cauchy—Schwartz inequality in
both inner product and probability spaces and study some of its special cases.

2. A generic refinement in the inner product space
For p,q € R, let us replace f(z) = u(z) + p and g(z) = v(z) + ¢ in (L) to get

(2.1) (u+p,v+q)% < (u+p,u+phw(v+q,0+ q)w.

By considering the linear property of an inner product space, inequality (ZI)) is
finally simplified as

(2.2) (u, )% < (u, w)w(v,v)0 — A (p,q),
in which
(2.3) A*(p,q) = cap® + 2¢” + 2a3pq + 2aup + 254,
such that
ar = a1(v) = (1,0)% = (1, 1)w (v, v)u,
az = az(u) = (u, 1), — (u,w)u(l, L,
(2.4) ag = az(u,v) = (U, V) (1, 1w — (U, 1) (1, 0)w,
g = ag(u,v) = (U, V) (1, V) — (U, 1)y (v, V),
as = ap(u,v) = (U, V), 1)y — (U w)y (1, 0)q

Note in [24) that
ar(u) = az(u) <0, az(u,v) =az(v,u), a(v,u)=as(u,v).

In order to improve the Cauchy—Schwartz inequality, our first goal in ([Z2)) is to find
a suitable domain, say D*, such that D* = {(p,q) | A*(p,q) > 0} and the second
goal is to find max A*(p, q) for any (p,q) € D*. To meet the first goal, without loss
of generality, we assume in (23] that ¢ = Ap where A € R to get

A*(p, Ap) = (a1 + Va2 + 2Xas)p® + 2(os + Aas)p = B1p* + 2B2p,

which is now an incomplete polynomial of degree 2 with respect to the variable p
and therefore the aforesaid interval is found as D* = [0, —2%] if and only if 5, < 0.

On the other hand, since d%A* (p, Ap) = 2B1p+2P2, SO Pmax = —% and we have
max A*(p, \p) = ,Z_f provided that 81 < 0. Hence, for any p € D* = [0, 72%] we
have

b
(2.5)  A*(p,Ap) 2 0 and pmax = f% € D* because in general at

1

€ [a,b].
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In order to show that 8; = asA? + 2a3\ + a1 < 0, one way is to prove that
ag<0andA:a§—a1a2<0forany)\€R.

According to ([L3J), it is clear that as = (u,1)2 — (u,u)y,(1,1), < 0. Moreover,
since

(u, 1)qy (1,0) B (u, )4y
@ (e G ), e e

replacing the left-hand side of equality (Z.8) in (L3) eventually yields
A=a2 —aras = ((t,0)0 (1, 1w — (u, 1)y (1,0),)°
({12 =  wh{L, Tha) (1,002 = (0, (1, 1) <0,
which approves 31 < 0. Note in (28] that (1,1), is always positive and
2
(e e ), = o
The following relations now hold true

B = a1 + Nas + 2 a3 = (1,0)% — (0,00 (1, 1)y + X2 (u,1)2

= A2 (U, w)w (1, 1y 4 22w, 0) o (1, 1)y — 22 (1, 1)y (v, 1)y
= (1,0 — )2 — (v — Au, v — M)y (1,1) <0,

Ba = ay + Aas = (U, 0) o, (1, 0y — (U, V) (U, 1)ey
+ M, v (t, L)y — Aty w) gy (1, V)
= (U, 0 — M)y (1, 0)0p — (U — Ay 0y (10, 1)
By replacing the two latter relations in ([2:2)) and noting (Z3]), we have

85 (v = AL, 0)w — (0 = A, v)wlu, D)

Bl - <U*)\U,’U*/\U>w<1,1>w - <v7)‘u51>12u

2.1. Corollary 1. For real-valued functions f, g and w > 0 and for any A € R,
Cauchy—Schwartz inequality (L3]) can be refined as

((f, D9, £ = Ag)w — (g Dulfs F = Aghu)”
<1a1>w<f_)‘gvf_)‘g>w_<1a f_)‘g>12u .
There are some special cases for the result (27). For instance, if A = 0, it reads as
((f Dulfs 9w = (L g)ul . )
<151>w<f7f>’u}7<f51>12u ’

(28) <fag>i) < (faf>w<gag>w_
which is equivalent to
2
R R i s L

(1, 1), (s o
(L, g)w(f, f)w(<1ag>w<fa flw =2(f, Dw(f, 9>w)
(1’1>w<faf>w_<f’1>12u .
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Also if f — g and g — f, inequality (2.8) changes to

(<1ag>w<fa 9w — ([, 1>w<9a9>w)2

(L, Dwlg, 9w — (Lg)s, 7
which is in fact corresponding to the case A*(0,q) = a2q¢® + 2a5q in (Z3), because
for any q € [0, —23‘—2} we have A*(0,¢q) > 0 and since gmax = — 28 € [0, —23—2},

a2

2
replacing A*(0, gmax) = —52 in (2.2) eventually leads to (ZT). Another case of
@) is when A\ = —1, i.e.,

(29) <fa g>12u < (fa f>w<g,g>w -

(<fa1>w<gaf+g>w B <ga1>w<faf+g>w)2
LDwlf+9: [+ 90w = (Lf+9)

We point out that to obtain an optimum value for A, we can minimize the denom-
inator of the fraction in (Z7), i.e., the value —/3;. For this purpose, by noting that
—ag > 0, we have

<fvg>i) < <f5 f>w<gag>w -

dpy (A
—61 = ﬁl()\) = —042)\2 — 2(13)\ — Q] = B;/(\ ) = —2(12)\ — 2043 =0.

2
Hence A\pin = —Z—z and substituting this value into $; and S finally gives % =

(04204*&3045)2 5 ; :
P p— where {ay};_, are determined in ([2.4).

3. A generic refinement in the probability space

Let U and V be two arbitrary random variables. The Cauchy—Schwartz in-
equality in a probability space takes the form

(3.1) E*(UV) < E(U*)E(V?),

where E(-) denotes the expected value of a random variable [7].
In order to establish a generic refinement to the inequality (B.1]), similar to the
previous section, we first replace U = X +p and V =Y + ¢ to obtain

(3.2) E*(XY) < B(X*)E(Y?) + B"(p,q),
in which
(3.3) B*(p,q) = (varY)p? + (var X)¢* — 2 cov(X,Y)pq
+2(E(X)E(Y?) — E(Y)E(XY))p +2(E(Y)E(X?) — BE(X)E(XY))q.
Note in [B.3]) that
cov(X,Y) = BE(XY) - E(X)E(Y), varX =cov(X,X) = E(X?) - F*X) > 0.
Also we have
E(X)E(Y?) - E(Y)E(XY)=E(X)varY — E(Y) cov(X,Y),
E(Y)E(X?) -~ E(X)E(XY) = E(Y)var X — E(X) cov(X,Y),
We should now find a suitable domain in ([32]), say D**, such that
D™ ={(p,q) | B*(p,q) <0}
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and then finding min B*(p, q) for any (p, ¢) € D**. For this purpose, we once again
assume in (3] that ¢ = Ap to arrive at

B*(p,\p) = ()\2 var X 4+ varY — 2\ cov(X, Y)) p?
+2(E(X)E(Y?) — E(Y)E(XY)+ AE(Y)E(X?) — NE(X)E(XY))p
= a(\)p* +b(\)p.

The aforesaid interval can be therefore considered as D** = [0, —QM] if a(A) > 0.

a(X)
Since dipB*(p, Ap) = 2a(AN)p + 2b(N\), SO Pmin = f% and min B*(p, \p) =

- lf((/\)\)) because for any p € D** we have B*(p, A\p) > 0 and pmin € D**. In order to

show that a()\) = (var X)A\? — 2cov(X,Y)\ + varY is nonnegative for any \ € R,
we must prove that var X > 0 and A = cov?(X,Y) — var X varY < 0, which are
however clear. This means that 2\ cov(X,Y) < A2var X + varY (V) € R).

3.1. Corollary 2. Let U and V be two arbitrary random variables. For any
A € R, inequality (BJ]) can be refined as

(3.4) E*(XY)< E(X*E(Y?)

(E(X)E(Y?) — BE(Y)E(XY) + AE(Y)E(X?) — X2E(X)E(XY))’
a (var X)A2 — 2cov(X,Y)\ + varY '

Similar to the previous section, there are some particular cases for inequality (3.4]).
For instance, if A = 0, it reads as

(E(X)E(Y?) - E(Y)E(XY))”
var Y ’

E*(XY) < E(X*)BE(Y?) -

Moreover, the best case for A is when we minimize the denominator of the fraction

B4) as follows
a()) = (var X)A\? — 2cov(X,Y)A +varY
da(X) cov(X,Y)
BN o(var X)A — 2cov(X,Y) = min = AT
= (var X)X\ —2cov(X,Y) =0 = A ar X
Since
o feov(X,Y)N 9
(3.5) a(Amin) = a( o ) —varY (1 — p?(X,Y)),
o eov(XY)N 5
(3.6) b(Amin) —b(W) = B(X)varY (1 — p*(X,Y)),
where p(X,Y) = % € [—1,1], denotes the correlation coefficient [7],

replacing ([3.3) and B.0) in (34) eventually yields
(3.7) E*(XY) < E(XHE(Y?) - E*(X)varY (1 — p*(X,Y)).
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There is also an analogue for the interesting inequality (B7)). If we directly
substitute p = — 2% cov(X,Y) and ¢ = —E(Y) into B3], we get

varY

B (- % cov(X,Y), ~E(Y)) = ~E*(Y) var X(1 = p%(X,Y)).
Hence, according to (B:2), the analogous inequality is revealed as
F*(XY) < E(X*)E(Y?) — B*(Y)var X(1 — p*(X,Y)).

3.2. Remark 1. If p = —E(X) and ¢ = —E(Y) are directly substituted into
B3), then we have
B*(—E(X), —E(Y)) = — (E*(Y)var X + E*(X)varY — 2E(X)E(Y) cov(X,Y)) .
But since

E*(Y)var X + E*(X)varY — 2E(X)E(Y) cov(X,Y)
— (Vvar XE(Y) — Vvar Y E(X))” + 2B(X)E(Y) (vVvar XvvarY — cov(X,Y)),
inequality (32)) takes the form
(3.8) EX(XY) < E(X?)E(Y?) — (Vvar XE(Y) — Vvar Y E(X))*
—2B(X)E(Y)(Vvar XVvarY — cov(X,Y)).

By noting that vvar Xv/varY —cov(X,Y) > 0, if in (B.8]) we take E(X) — |E(X)]
and E(Y) — |E(Y)], then the inequality (3.8) will be refined as

E*(XY) < E(X*)E(Y?) — (Vvar X |[E(Y)| — VvarY |E(X)|)2.
This result was derived by Walker in 2017 [9].

3.3. An open problem. By noting the remark 1 and as we observed, there
are many options for choosing the parameters p and ¢, which should be separately
considered and studied.

2
For instance, by noting that 1 — uf{% > 0 is valid in an inner product
2
space and 1 — % > 0 is valid in a probability space Are there two specific

parameters p and ¢ such that
) LDel9 9w s
A pq) = e gy g) - BB,
which are respectively equivalent to the inequality
(£, 1)
f,9)% < (1—7w [ FOw(gs 9w,
Vo) (LDwl(f, )y s Fhula.9)
in an inner product space and the inequality
E*(X)
E(X?)

E(XY) < (1 )E(XQ)E(YQ),

in a probability space?
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