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GENERALIZED FIBONACCI NUMBERS
OF THE FORM 1122 + 1

ﬂ'mmﬁgﬁlsﬁm (ﬂ)gﬁt and Refik Keskin

ABSTRACT. Let P > 3 be an integer and let (Uy) denote generalized Fibonacci
sequence defined by Ugp = 0,U; = 1 and Up4+1 = PU, —Up—1 forn > 1. In
this study, when P is odd, we solve the equation U, = 1122 4+ 1. We show
that only U; and Uz may be of the form 1122 + 1.

1. Introduction

Let P and @ be nonzero integers. Generalized Fibonacci sequence (U,,) and
Lucas sequence (V,,) are defined by Uy(P,Q) = 0,U1(P,Q) = 1; V(P,Q) =
2,Vi(P,Q) = P, and U,41(P,Q) = PU,(P,Q) + QU,,—1(P,Q), Vo1 (P, Q) =
PV, (P,Q) 4+ QV,—1(P,Q) for n > 1. U,(P,Q) and V,(P,Q) are called n-th
generalized Fibonacci number and n-th generalized Lucas number, respectively.
Generalized Fibonacci and Lucas numbers for negative subscripts are defined as

U—n(P7Q) = 7(7Q)7nUn(PaQ) and V—H(Pa Q) - (7Q)7nvn(P7Q)7

respectively. Since
Un(_PaQ) = (_1)n_1Un(P7Q) and Vn(_PvQ) = (_1)nvn(Pv Q)?

it will be assumed that P > 1. Moreover, we will assume that P2 4+ 4Q > 0. For
P =@ =1, we have classical Fibonacci and Lucas sequences (F},) and (L,). For
P =2 and Q = 1, we have Pell and Pell-Lucas sequences (P,) and (Q,,). For more
information about generalized Fibonacci and Lucas sequences one can consult [8].

In [1], the authors showed that when a # 0 and b are integers, the equation
U, (P, £1) = az?+b has only a finite number of solutions n. Moreover, they showed
that when a # 0 and b # £2, the equation V,,(P,£1) = ax? + b has only a finite
number of solutions n. In [4], Keskin, solved the equations V,,(P,—1) = wz? £+ 1
for w =1,2,3,6 when P is odd. In [3], when P is odd, Karaath and Keskin solved
the equations V,,(P,—1) = wz? + 1 for w = 5,7. In [6], Keskin and Ogiit solved
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the equations U, (P, —1) = wz? 4+ 1 for w = 1,2,3,5,7,10 when P is odd. In this
study we solve the equation U, (P, —1) = 1122 + 1 for odd value of P. We show
that only U; and Us may be of the form 1122 + 1. Our main result is Theorem 3.1.

We will use the Jacobi symbol throughout this study. Our method is elementary
and used by Cohn, Ribenboim and McDaniel in [2] and [10], respectively.

2. Preliminaries

From now on, instead of U, (P, —1) and V,,(P, —1), we write U,, and V},, respec-
tively. Moreover, we will assume that P > 3.
The following lemmas can be proved by induction.

LEMMA 2.1. If n is a positive integer, then Ua, = n(—1)"*'P (mod P?) and
Uzni1 = (—1)" (mod P?).

LEMMA 2.2. Ifn is a positive integer, then Vo, = 2(—=1)" (mod P) and Va, 11 =
0 (mod P).

The following theorems are given in [4].

THEOREM 2.1. Let P be odd. If V,, = ka? for some k | P with k > 1, then
n=1.

THEOREM 2.2. Let P be odd. Then the equation U, = kx® + 1 has only the
solution n = 1.

The following lemma is given in [5].

LEMMA 2.3. 11 | V,, if and only if 11 | P and n is odd or P? = 3 (mod 11)
and n = 3t for some odd integer t.

Now we give the following theorem from [9], which will be useful for solving
the equation U,, = 1122 + 1.

THEOREM 2.3. Let P be odd. If V,, = 2% for some integer x, then n = 1.
The following two theorems are given in [11].

THEOREM 2.4. Let n € NU{0}, m, r € Z and m be a nonzero integer. Then

(2.1) Usmntr = Uy (mod Up,)

and

(22) Vanir =V (mod Uy).
THEOREM 2.5. Let n € NU{0} and m, r € Z. Then

(2.3) Usnar = (=1)"U,.  (mod V,,)

and

(2.4) Vomntr = (=1)"V;. (mod V).
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If n =2-2%a 4 r with a odd, then we get

(25) Un = U2-2ka+r = —UT (mod ‘/Qk)
and
(2.6) Vo = Vogkgr, = —Vo  (mod Vir).

by (2.3) and (2.4), respectively.
Since 8 | Us, when P is odd, we get

Usg+r = U, (mod 8)
and
(2.7) Vogtr = Vr (mod 8)

by (2.1) and (2.2), respectively.
Moreover, when P is odd, an induction method shows that

Vor =7  (mod 8)
()=
and

(2.8) (‘;21) =1

for all £ > 1.
When P is odd and P? = 1,4 (mod 11) we get

and thus

(2.9) (%) =1
for all £ > 1. Moreover, we have
(2.10) (Pv;l) - (P‘;l) —1.

for k£ > 1. Now we give some identities concerning generalized Fibonacci and Lucas
numbers:

U_, =-U, and V_,, =V,

(2.11) Usni1 — 1 =Up Vi1,
Uzn, = Up Vi,

Vi = (P*—4)U; =4,
Vop = V2 -2

Van = Vi (V2 = 3) =V, (Vap, — 1).
If P is odd, then
(2.12) 21U,< 2|V, < 3|n.
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Let m = 2%, n = 2%, k and [ odd, a,b > 0, and d = (m,n). Then (see [7])

Vy if a > b,
lor2 ifa<hb.

(2.13) (U, Vo) = {

3. Main Theorems

From now on, we will assume that n is a positive integer and P is an odd
integer.

LEMMA 3.1. If 11 | P, then V,, = 1122 has the solution n = 1. If P2 = 3
(mod 11), then the equation V,, = 1122 has no solutions.

PROOF. Assume that V,, = 1122 for some integer . By Lemma 2.3, 11 | V,,
if and only if 11 | P and n is odd or P? = 3 (mod 11) and n = 3t for some odd
integer t. Let 11 | P and n be odd. Then by Theorem 2.1, we get n = 1. Now
assume that P? = 3 (mod 11) and n = 3t for some odd integer ¢. Let t = 4q + 1.
Then n = 12¢ £+ 3 and so

Vi, = Viggas =Vag =Vs  (mod Us)
by (2.1). Since 8 | Us, it follows that
112?> = V3 = P(P? —3) (mod 8).

Thus, 1122 = —2P (mod 8), which implies that 22 = —6P (mod 8). This is
impossible since P is odd. O

LEMMA 3.2. If V,, = 11kx? for some k| P with k > 1, then n = 1.

PROOF. Let V,, = 11kz? for some k | P with k > 1. Since 11 | V,,, n is odd
by Lemma 2.3. Let n = 6¢ + r with r € {1,3,5}. Then V,, = V3, V5, V5 (mod 8)
by (2.7). Then we get 11kz? = P,—2P (mod 8). On the other hand, we can write
P = kM, because k | P. Then we readily obtain 11kM2? = PM,—2PM (mod 8)
implying that 11Pz? = PM,—2PM (mod 8). This implies that 112? = M, -2M
(mod 8) since (8, P) = 1. Thus, we get 22 = 3M,2M (mod 8). Using the fact
that M is odd, we have M = 3 (mod 8). Since 11 | V,,, it follows that 11 | P or
P? =3 (mod 11) by Lemma 2.3. Let n > 1. Then n = 4¢ + 1 for some ¢ > 0 and
son =2-2"a+1 with a odd and r > 1. Thus, 11kz? = V,, = -V} (mod Va-) by
(2.6). This shows that 1122 = —M (mod V), which implies that

11 -1 M M
(3.1) (1/2):(1/2)(\/2>:_(V2)
Now let r = 1. If 11 | P or P? =3 (mod 11), then it can be seen that (‘%) = (%)

This is impossible by (3.1). Let » > 2. If P2 = 3 (mod 11), then it can be seen that
Vor = —1 (mod 11) and Vor =2 (mod M). If 11 | P, then V5r = 2 (mod 11) and
Vor =2 (mod M). In both cases, it is seen that (%) = (%), which is impossible
by (3.1). Therefore n = 1. O

THEOREM 3.1. If U, = 1122 + 1 for some integer x, thenn =1 orn = 2.
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PROOF. Assume that U, = 1122 +1 for some integer x. If 11 | P, then by
Theorem 2.2, we get n = 1. Assume that 11 + P. Let n > 2 be even. Then
1122 +1 =0 (mod P) by Lemma 2.1. Thus

| B)-G)

(3.2) (%) ~ 1

Now we divide the proof into four cases.

Caske 3.1. Let P? =1,4 (mod 11). Since n is even, n = 4q + r for some ¢ > 0
with r =0,2. Thus n =2-2*a + r with @ odd and k > 1. Then

2% = -14U,=-1-U, (mod Vak)
by (2.5). This shows that

1Ha?=—-1,—(P+1) (mod Vy),
which is impossible since (‘}—i) =1, (‘;—i) = —1, and (%) =1 by (2.9), (2.8),
2 2 2k

and (2.10), respectively.

CASE 3.2. Let P2 =3 (mod 11). Then 11 | V3 and P =5 (mod 11) by (3.2).
Since n is even n = 6¢ + r for some ¢ > 0 with r € {0,2,4}. Therefore

U, = Usg4r = U, (mod V3)
by (2.3). Then
Un = U6q+7« = :|:U0, :|:U2, :|:U4 = O, +P (mOd ‘/3),

which implies that U,, = 0, £5 (mod 11). But this contradicts the fact that U, =1
(mod 11).

CASE 3.3. Let P? =5 (mod 11). Then 11 | Us and P =4 (mod 11) by (3.2).
Since n is even n = 6¢ 4 r for some ¢ > 0 with r € {0,2,4}. If n = 6¢, then

a2 +1=U, =Us, =Uy (mod Us).

It follows that 1122 = —1 (mod 8) by (2.7), which is impossible. If n = 6q + 2,
then we can write n = 12t +2 or n = 12t + 8 for some ¢ > 0. Let n = 12¢ + 2. Since
16 | Us, we get 1122 4+ 1 =U,, = Uy = P (mod 16) by (2.1). A simple calculation
shows that 1122 +1 = 1,4,12,13 (mod 16). Thus it can be easily seen that P
= 1,13 (mod 16). Moreover,
Na? = 14U, =14+ Uigtyo = -1+ Uy (mod Us)
by (2.1). This shows that
112> =P -1 (mod P+ 1),

which implies that
112? = =2 (mod (P +1)/2).
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Then it follows that

((Pill)/2> - ((P 4:21)/2>'

((P+ 1)/2) _ ( 2 )
11 P+1)/2)
By using the facts that (P +1)/2=1,7 (mod 8) and P =4 (mod 11) we get

—l= (%) (%) = ((P J;11)/2) = ((P +21)/2> =1

a contradiction. Let n = 12¢ + 8. Then n = 12s — 4 with s > 0. Since 16 | Us, we
get 1122 +1 = U,, = —U, (mod 16) by (2.1). By using the fact that 112? + 1 =
1,4,12,13 (mod 16), we get P = 1,5 (mod 16). Assume that P = 1 (mod 16).
Since n =12s — 4 ,

Therefore

Nz =—-14+U,=-1+U; (mod Us)
by (2.1). Then we have
1122 = -2 (mod (P +1)/2),
which implies that

((Pill)/2> - ((P 4:21)/2>'

<(P 4111)/2) - ((P +21)/2)'

-1= (%) (%) B <(P Jill)m) - ((P +21)/2> =1

a contradiction. Now assume that P =5 (mod 16). Since n is even, n = 10g+7r,7 €
{0,2,4,6,8}. Using 11 | Us, we get 1122 + 1 = U, = U, (mod 11) by (2.1). A
simple calculation shows that » = 4. And so n = 10¢ + 4. On the other hand,
since n = 12s — 4, it is easily seen thatn = 60k + 44 for some natural number k.
Therefore, n can be written as n = 20q; + 4 for some natural number ¢;. Thus by
using (2.3), we get

From here, we get

Therefore

Un = Usog,+4 = Uy (mod V5),
which implies that
1122 =P3>—2P -1 (mod P*—5P? +5)

since Vs = P(P* — 5P? +5). This shows that

( 11 )_(P3—2P—1)_<(P3—2P—1)/2)

pt—5P2+5/ \pt—5P2+5/ \ P*{—5P24+5 )

By using the facts that (P3 —2P —1)/2=1 (mod 8), P! —5P2+5=5 (mod 11),
P*—5P?2+5=9 (mod 16), and —3P? + P+ 5 =7 (mod 16), we get

4 2 3 _ _
L= (%) - (#) - (P4—;32+5> - ((PP4 —25];2 +1)5/2)
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_=p2 _ap2 3 _ _
( —2515—455/2) ((PSTQJJZI:F)?Q):((Jjapffpi)f)

pP3—2P -1 2 _ pP3—-2P -1
( 3P2+P+5)( 3P2+P+5)_(—3P2+P+5)
3 _ _ — _
(9P 2P 1)) ( 2(P+2) ):( 2 )( P+2 )

P2+ P+5 3P2+P+5 3P24+ P+5/\-3P2+P+5

2 _ —
() - G ) = (579) = (559)

-1

3

a contradiction. If n = 6q + 4, then we can write n = 12t + 4 or n = 12t + 10 for
some nonnegative integer t. Let n = 12¢ + 10. Then n = 12¢; — 2 with ¢; > 0.
Since 16 | Ug, we get 1122 +1 = U, = —U, (mod 16) by (2.1). Using the fact
that 1122 + 1 = 1,4,12,13 (mod 16), it is seen that P = 3,15 (mod 16). Since
1122 = —1+ U_5 (mod Us) by (2.1), we get

12z? = —(P+1) (mod P?—1).

Therefore
1122 = -2 (mod P — 1),

((P—Hl)/2) - ((p:i)/z)’

(P—1)/2\ 2
( 11 ) B ((P—l)/2)'
By using the fact that (P —1)/2=1,7 (mod 8), we get

3 P—1y\/2 (P —1)/2 2
(11) ( 11 )(11) ( 11 ) ((Pfl)/Q) ’
a contradiction. Let n = 12t + 4. Since 16 | Ug, we get U, = Uy (mod 16) by
(2.1). This shows that 1122 + 1 = P? — 2P (mod 16). It can be easily seen that

P = 11,15 (mod 16) since 1122 + 1 = 1,4,12,13 (mod 16). Assume that P = 15
(mod 16). Then

12?2 = -14U,=-14Uippu=-1+Us=—(P+1) (mod Us),

which implies that

i.e.,

which implies
112? = =2 (mod (P —1)/2).

((P—lll)/2) - ((p:?)/g)

()

It follows that

and then

- ((P—21)/2>'
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This is impossible since (ﬁ) =1 and

(P-1)/2, _(P-1ye2y _
( 11 )_( 11 >(11)_ ’
Now assume that P = 11 (mod 16). Since n is even, n = 10¢ + r with r €
{0,2,4,6,8}. Using 11 | Us, we get 1122 +1 = U, = U, (mod 11) by (2.1). A
simple calculation shows that » = 4. Thus n = 10q + 4. Since n = 12t + 4, we get
n = 60k + 4 for some natural number k. Therefore by using (2.3), it is seen that

Un = Usokta =Us  (mod V5),

which implies that
122 =P>—2P -1 (mod P*—5P? +5)
since Vs = P(P* — 5P? +5). This shows that
( i 112 ):(P:”—QPZ—l):((P34—2P2—1)/4).
P+ —5P2+5 Pt —5P%2+5 Pt —5P%2+5

By using the facts that (P3 —2P —1)/4 =3 (mod 4), P*—5P2+5=5 (mod 11),
P*—5P%2 +5=9 (mod 16), and —3P2+ P+ 5 =3 (mod 16), we get

5 P4—5P2+5 11 (P3—2P —1)/4
1:(ﬁ):< ) (P4—5P2+5):< PY_5P2+5 )
( —5P2+5 ) (—3P2+P+5 )__((P3—2P—1)/4)
(P3—2P —1)/4 (P3—2P—1)/4) —3P2+P+5
_ P3—-2P -1 (P?—2P —1) —2(P+2)
- ( 3P2+P+5 ( 3P2+P+5) _(—3P2+P+5)

)=
- (3P2+P+5)< PI;LQD+5) (%)
)=

2 _
() () - )

= — 1 5
a contradiction.

CASE 3.4. Case IV. Let P2 = 9 (mod 11). Then P = 3 (mod 11) by (3.2).
Since n is even, n = 6g + r for some ¢ > 0 with r € {0,2,4}. If n = 6¢, then
Ha? +1=U, =Us; =Uy (mod Us).

It follows that 1122 = —1 (mod 8) by (2.7), which is impossible. If n = 6q + 2,
then we can write n = 12t + 2 or n = 12t + 8 for some nonnegative integer ¢. Let
n = 12t +8. Then there exists positive integer g such that n = 12¢; —4. Therefore
by using (2.3), it is seen that

Un = U12q1_4 = :tU_4 (mod VQ),

which implies that
112> = -1 (mod P? —2).
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(7o=3) = (723)
pP2-2) \p2_2

P2 -2
()=t
11
which is impossible since P? —2 = 7 (mod 11). Let n = 12t + 2. Since 16 | Us,
we get 1122 +1 = U, = Uz (mod 16) by (2.1). A simple calculation shows that
112% +1 = 1,4,12,13 (mod 16). Since 1122 + 1 = P (mod 16), we get P = 1,13
(mod 16). Moreover,
11%22—1+U :—1—|—U12t+25—1+U2 (mod U3)

by (2.1). This shows that

Thus

and therefore

112> =P -1 (mod P+ 1),
which implies

112? = =2 (mod (P +1)/2).
Then it follows that

((Pill)/2) - ((P4:21)/2>'

((P—i— 1)/2) _ ( 2 )
11 (P+1)/2)
By using the facts that (P +1)/2=1,7 (mod 8) and P+ 1 =4 (mod 11), we get

—l= (%) (%) B <(PJ;11)/2) - ((P 4—21)/2> =1

a contradiction. If n = 6q + 4, then we can write n = 12t + 4 or n = 12t + 10 for
some nonnegative integer t. Let n = 12t 4+ 4. Then

H2? =U, —1=Uigys —1=+Us—1 (mod V3),

Thus

which implies that

112> = -1 (mod P? —2).

Thus

oy /-1

(P2 - 2) B (P2 72)
and then
P2 —2y 1

( 11 ) o
This is impossible since P> —2 =7 (mod 11). Let n = 12¢t+10. Then n = 12¢; —2
with ¢; > 0. Since 16 | Us, we get 1122 +1 = U, = —U, (mod 16) by (2.1).

Using the fact that 1122 + 1 = 1,4,12,13 (mod 16), it is seen that P = 3,15
(mod 16). Since n is even, n = 10q + r with r € {0,2,4,6,8}. Using 11 | Us, we
get 1122 +1 = U, = U, (mod 11) by (2.1). A simple calculation shows that r = 6.
Thus n = 10g+6. Since n = 12t +4, we get n = 60k — 14 for some natural number
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k. Thus n can be written as n = 20s + 6 for some natural number s. Assume that
P =15 (mod 16). Then by using (2.3), it is seen that

Up = Usps46 = Us  (mod Vs),
which implies that
112? = P —4P3 +3P —1 (mod P* —5P? 4 5)

since Vs = P(P* —5P% +5) and Ug = P5 — 4P3 + 3P. This shows that

( 11 )_(P5—4P3+3P—1)_<P3—2P—1)

Pt—5pP24+5/ \ P{-5P24+5 / \P{-5P245

By using the facts that P* —5P2 +5 =8 (mod 11), P* —5P?2+5=1 (mod 16),
—3P?2+P+5=1 (mod 16), and P3 —2P — 1 = 2"a with a odd and r > 4, we get

8\ (P*—5P?+5\ 11 _ P3-2P-1
ﬁ)_( 11 >_(P4—5P2+5)_(P4—5P2+5)
2"a 2 r a
P4—5P2+5) (P4 5P2+5) (P4 5P2+5>
) (P4 5P2+5> ( 3P2+P+5)

T
a

P*—5P%2+5

( 3P2—|—P+5) ( P2+P+5>
P3—2P— 1) ( P3—2P—1))
3P2+P+5 3P2+P+5

3P2+P+5

)=

)=
—2(P+2 )7

)=

2"a
( )

—3P2+ P +5
P+2

(

(

(
~(SrrPs

(=

(

= (=

(=
( 3P2+P+5)( PJQDIIQDJFE))
()= (0) = (77)

P+2
a contradiction. Now assume that P =3 (mod 16). Then by using (2.3), we get
113}2 = Un —1= U60k714 —1= U,14 —1= —(U14 + 1) (mod V15),

3P2+P+5

which implies that
12? = —(Ug +1) (mod P® —7P% +14P* —8P% +1)

since V15 = P(P* —5P? + 5)(P? — 3)(P® — 7P% 4+ 14P* — 8P% + 1). Moreover, it
can be shown that

(3.3) —(Ua+1)=—(P> —5P3+6P +1) (mod P®—7P°®4 14P* —8P% 4 1).
Therefore we get

112? = —(P* —5P* + 6P +1) (mod P® — 7P% +14P* —8P? +1)
by (3.4) and (3.3). Thus

( 11 )_( (P5—5P346P +1) )
P8 —7P6 1 14P% —8P24+ 1) \P8 _—7P6 +14P4—8P2+1)/)’
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which implies that
(P877P6+14P4—8P2+1> B ( P> —5P% + 6P +1 )
11 ~ \P8 _7P6 4 14P4 —8P2 41/

(3.4)

By using the facts that
P® —7P% +14P* ~8P?* +1=2 (mod 11),
P8 —7P5 +14P* —8P?* +1=1 (mod 8),
P*+P?—2P? 2P -1=3 (mod38),
P34+ P?2-3P-1=2 (mod8),
and P> — P —1=5 (mod 8), from (3.4), it is seen that
g)_(P8—7P6+14P4—8P2—|—1) ( P5 —5P3 +6P+1 )

11 11 P8 —7P6 4+ 14P4 —8P2 + 1
B P—1 P+ p?—2p?—2p—1
B PS—7P6—|—14P4—8P2+1)<P8—7P6+14P4—8P2+1>
B (P—-1)/2 P8 —7P% 4 14P* —8P2 4+ 1
- 8—7P6+14P4—8P2+1)( P44+ pP3_2P2_2P—1 )

(
(
(

8 —7PS 4+ 14P* —8P% + 1\, —2(P3+ P> -3P —1)

:( (P-1)/2 )(P4+P3—2P2—2P—1)

(
(
(

P44 P3—2P2 2P 1
-2 P34+ P2 3P -1
P4+P3—2P2—2P—1>(P4+P3—2P2—2P—1>
P3+P?2-3P-1 (P3+P?-3P—-1)/2
P4+P3—2P2—2P—1):_(P4+P3—2P2—2P—1)
_ (Pt4PP_2P?—2P—1\ P2-pP-1
__( (P34 P2 —3P—1)/2 >__((P3+P2—3P—1)/2)
:_((P3+P2—3P—1)/2):(P3+P2—3P—1)
P2_pP—1 P2-pP—1

- (7=5=7)
T\pP2-p-1
=1,

a contradiction. Therefore n = 2. Now assume that n > 3 and n is odd. Then n =
2m + 1 for some m > 1. Since U,, = 1122 + 1, we get 1122 = Uspy1 — 1 = Uy, Vingt
by (2.11). Let m be odd. Then (U, Vipt1) =1 by (2.12) and (2.13). Thus

(3.5) Upn = a® and V4 = 1107
or
(3.6) Un = 11a* and V1 = V?

for some integers a and b. The identities (3.5) and (3.6) are impossible by Lemma
3.1 and Theorem 2.3, respectively. Let m be even. Then (U,,, Vint+1) = P by (2.13).

_ 3 2 _ _
(P_ll)/z)( 2(P°+P°-3P 1))
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Thus

(3.7) Un = Pa® and Vi, 11 = 11PV?
or

(3.8) U,, = 11Pa* and V,,,;; = Pb*.

for some integers a and b. The identities (3.7) and (3.8) are impossible by Lemma
3.2 and Theorem 2.1, respectively. Therefore n < 3. If n = 3, we get P2 — 1 =
Us = 1122 + 1, which implies that P? = 2 (mod 11). This is impossible. Thus

n

10.

11.

= 1. As a consequence, we get n =1 or n = 2. O
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