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GENERALIZED FIBONACCI NUMBERS
OF THE FORM 11x2 + 1

Ümmügülsüm Öğüt and Refik Keskin

Abstract. Let P > 3 be an integer and let (Un) denote generalized Fibonacci
sequence defined by U0 = 0, U1 = 1 and Un+1 = PUn − Un−1 for n > 1. In
this study, when P is odd, we solve the equation Un = 11x2 + 1. We show
that only U1 and U2 may be of the form 11x2 + 1.

1. Introduction

Let P and Q be nonzero integers. Generalized Fibonacci sequence (Un) and
Lucas sequence (Vn) are defined by U0(P,Q) = 0, U1(P,Q) = 1; V0(P,Q) =
2, V1(P,Q) = P, and Un+1(P,Q) = PUn(P,Q) + QUn−1(P,Q), Vn+1(P,Q) =
PVn(P,Q) + QVn−1(P,Q) for n > 1. Un(P,Q) and Vn(P,Q) are called n-th
generalized Fibonacci number and n-th generalized Lucas number, respectively.
Generalized Fibonacci and Lucas numbers for negative subscripts are defined as

U−n(P,Q) = −(−Q)−nUn(P,Q) and V−n(P,Q) = (−Q)−nVn(P,Q),

respectively. Since

Un(−P,Q) = (−1)n−1Un(P,Q) and Vn(−P,Q) = (−1)nVn(P,Q),

it will be assumed that P > 1. Moreover, we will assume that P 2 + 4Q > 0. For
P = Q = 1, we have classical Fibonacci and Lucas sequences (Fn) and (Ln). For
P = 2 and Q = 1, we have Pell and Pell-Lucas sequences (Pn) and (Qn). For more
information about generalized Fibonacci and Lucas sequences one can consult [8].

In [1], the authors showed that when a ̸= 0 and b are integers, the equation
Un(P,±1) = ax2+b has only a finite number of solutions n. Moreover, they showed
that when a ̸= 0 and b ̸= ±2, the equation Vn(P,±1) = ax2 + b has only a finite
number of solutions n. In [4], Keskin, solved the equations Vn(P,−1) = wx2 ± 1
for w = 1, 2, 3, 6 when P is odd. In [3], when P is odd, Karaatlı and Keskin solved

the equations Vn(P,−1) = wx2 ± 1 for w = 5, 7. In [6], Keskin and Öğüt solved
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2 ÖĞÜT AND KESKİN

the equations Un(P,−1) = wx2 + 1 for w = 1, 2, 3, 5, 7, 10 when P is odd. In this
study we solve the equation Un(P,−1) = 11x2 + 1 for odd value of P . We show
that only U1 and U2 may be of the form 11x2+1. Our main result is Theorem 3.1.

We will use the Jacobi symbol throughout this study. Our method is elementary
and used by Cohn, Ribenboim and McDaniel in [2] and [10], respectively.

2. Preliminaries

From now on, instead of Un(P,−1) and Vn(P,−1), we write Un and Vn, respec-
tively. Moreover, we will assume that P > 3.

The following lemmas can be proved by induction.

Lemma 2.1. If n is a positive integer, then U2n ≡ n(−1)n+1P (mod P 2) and
U2n+1 ≡ (−1)n (mod P 2).

Lemma 2.2. If n is a positive integer, then V2n ≡ 2(−1)n (mod P ) and V2n+1 ≡
0 (mod P ).

The following theorems are given in [4].

Theorem 2.1. Let P be odd. If Vn = kx2 for some k | P with k > 1, then
n = 1.

Theorem 2.2. Let P be odd. Then the equation Un = kx2 + 1 has only the
solution n = 1.

The following lemma is given in [5].

Lemma 2.3. 11 | Vn if and only if 11 | P and n is odd or P 2 ≡ 3 (mod 11)
and n = 3t for some odd integer t.

Now we give the following theorem from [9], which will be useful for solving
the equation Un = 11x2 + 1.

Theorem 2.3. Let P be odd. If Vn = x2 for some integer x, then n = 1.

The following two theorems are given in [11].

Theorem 2.4. Let n ∈ N∪{0}, m, r ∈ Z and m be a nonzero integer. Then

(2.1) U2mn+r ≡ Ur (mod Um)

and

(2.2) V2mn+r ≡ Vr (mod Um).

Theorem 2.5. Let n ∈ N∪{0} and m, r ∈ Z. Then

(2.3) U2mn+r ≡ (−1)nUr (mod Vm)

and

(2.4) V2mn+r ≡ (−1)nVr (mod Vm).
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If n = 2 · 2ka+ r with a odd, then we get

(2.5) Un = U2·2ka+r ≡ −Ur (mod V2k)

and

(2.6) Vn = V2·2ka+r ≡ −Vr (mod V2k).

by (2.3) and (2.4), respectively.
Since 8 | U3, when P is odd, we get

U6q+r ≡ Ur (mod 8)

and

(2.7) V6q+r ≡ Vr (mod 8)

by (2.1) and (2.2), respectively.
Moreover, when P is odd, an induction method shows that

V2k ≡ 7 (mod 8)

and thus ( 2

V2k

)
= 1

and

(2.8)
(−1

V2k

)
= −1

for all k > 1.
When P is odd and P 2 ≡ 1, 4 (mod 11) we get

(2.9)
( 11

V2k

)
= 1

for all k > 1. Moreover, we have

(2.10)
(P − 1

V2k

)
=

(P + 1

V2k

)
= 1.

for k > 1. Now we give some identities concerning generalized Fibonacci and Lucas
numbers:

U−n = −Un and V−n = Vn,

U2n+1 − 1 = UnVn+1,(2.11)

U2n = UnVn,

V 2
n − (P 2 − 4)U2

n = 4,

V2n = V 2
n − 2

V3n = Vn(V
2
n − 3) = Vn(V2n − 1).

If P is odd, then

(2.12) 2 | Un ⇔ 2 | Vn ⇐⇒ 3 | n.
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Let m = 2ak, n = 2bl, k and l odd, a, b > 0, and d = (m,n). Then (see [7])

(2.13) (Um, Vn) =

{
Vd if a > b,

1 or 2 if a 6 b.

3. Main Theorems

From now on, we will assume that n is a positive integer and P is an odd
integer.

Lemma 3.1. If 11 | P , then Vn = 11x2 has the solution n = 1. If P 2 ≡ 3
(mod 11), then the equation Vn = 11x2 has no solutions.

Proof. Assume that Vn = 11x2 for some integer x. By Lemma 2.3, 11 | Vn

if and only if 11 | P and n is odd or P 2 ≡ 3 (mod 11) and n = 3t for some odd
integer t. Let 11 | P and n be odd. Then by Theorem 2.1, we get n = 1. Now
assume that P 2 ≡ 3 (mod 11) and n = 3t for some odd integer t. Let t = 4q ± 1.
Then n = 12q ± 3 and so

Vn = V12q±3 ≡ V±3 ≡ V3 (mod U3)

by (2.1). Since 8 | U3, it follows that

11x2 ≡ V3 ≡ P (P 2 − 3) (mod 8).

Thus, 11x2 ≡ −2P (mod 8), which implies that x2 ≡ −6P (mod 8). This is
impossible since P is odd. �

Lemma 3.2. If Vn = 11kx2 for some k | P with k > 1, then n = 1.

Proof. Let Vn = 11kx2 for some k | P with k > 1. Since 11 | Vn, n is odd
by Lemma 2.3. Let n = 6q + r with r ∈ {1, 3, 5}. Then Vn ≡ V1, V3, V5 (mod 8)
by (2.7). Then we get 11kx2 ≡ P,−2P (mod 8). On the other hand, we can write
P = kM , because k | P . Then we readily obtain 11kMx2 ≡ PM,−2PM (mod 8)
implying that 11Px2 ≡ PM,−2PM (mod 8). This implies that 11x2 ≡ M,−2M
(mod 8) since (8, P ) = 1. Thus, we get x2 ≡ 3M, 2M (mod 8). Using the fact
that M is odd, we have M ≡ 3 (mod 8). Since 11 | Vn, it follows that 11 | P or
P 2 ≡ 3 (mod 11) by Lemma 2.3. Let n > 1. Then n = 4q ± 1 for some q > 0 and
so n = 2 · 2ra ± 1 with a odd and r > 1. Thus, 11kx2 = Vn ≡ −V1 (mod V2r ) by
(2.6). This shows that 11x2 ≡ −M (mod V2r ), which implies that

(3.1)
( 11

V2r

)
=

(−1

V2r

)( M

V2r

)
= −

( M

V2r

)
.

Now let r = 1. If 11 | P or P 2 ≡ 3 (mod 11), then it can be seen that
(
11
V2

)
=

(
M
V2

)
.

This is impossible by (3.1). Let r > 2. If P 2 ≡ 3 (mod 11), then it can be seen that
V2r ≡ −1 (mod 11) and V2r ≡ 2 (mod M). If 11 | P , then V2r ≡ 2 (mod 11) and
V2r ≡ 2 (mod M). In both cases, it is seen that

(
11
V2r

)
=

(
M
V2r

)
, which is impossible

by (3.1). Therefore n = 1. �

Theorem 3.1. If Un = 11x2 + 1 for some integer x, then n = 1 or n = 2.
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Proof. Assume that Un = 11x2 +1 for some integer x. If 11 | P , then by
Theorem 2.2, we get n = 1. Assume that 11 - P . Let n > 2 be even. Then
11x2 + 1 ≡ 0 (mod P ) by Lemma 2.1. Thus(11

P

)
=

(−1

P

)
,

i.e.,

(3.2)
( P

11

)
= 1.

Now we divide the proof into four cases.

Case 3.1. Let P 2 ≡ 1, 4 (mod 11). Since n is even, n = 4q + r for some q > 0
with r = 0, 2. Thus n = 2 · 2ka+ r with a odd and k > 1. Then

11x2 = −1 + Un ≡ −1− Ur (mod V2k)

by (2.5). This shows that

11x2 ≡ −1,−(P + 1) (mod V2k),

which is impossible since
(

11
V
2k

)
= 1,

( −1
V
2k

)
= −1, and

(
P+1
V
2k

)
= 1 by (2.9), (2.8),

and (2.10), respectively.

Case 3.2. Let P 2 ≡ 3 (mod 11). Then 11 | V3 and P ≡ 5 (mod 11) by (3.2).
Since n is even n = 6q + r for some q > 0 with r ∈ {0, 2, 4}. Therefore

Un = U6q+r ≡ ±Ur (mod V3)

by (2.3). Then

Un = U6q+r ≡ ±U0,±U2,±U4 ≡ 0,±P (mod V3),

which implies that Un ≡ 0,±5 (mod 11). But this contradicts the fact that Un ≡ 1
(mod 11).

Case 3.3. Let P 2 ≡ 5 (mod 11). Then 11 | U5 and P ≡ 4 (mod 11) by (3.2).
Since n is even n = 6q + r for some q > 0 with r ∈ {0, 2, 4}. If n = 6q, then

11x2 + 1 = Un = U6q ≡ U0 (mod U3).

It follows that 11x2 ≡ −1 (mod 8) by (2.7), which is impossible. If n = 6q + 2,
then we can write n = 12t+2 or n = 12t+8 for some t > 0. Let n = 12t+2. Since
16 | U6, we get 11x2 + 1 = Un ≡ U2 ≡ P (mod 16) by (2.1). A simple calculation
shows that 11x2 + 1 ≡ 1, 4, 12, 13 (mod 16). Thus it can be easily seen that P
≡ 1, 13 (mod 16). Moreover,

11x2 = −1 + Un ≡ −1 + U12t+2 ≡ −1 + U2 (mod U3)

by (2.1). This shows that

11x2 ≡ P − 1 (mod P + 1),

which implies that

11x2 ≡ −2 (mod (P + 1)/2).
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Then it follows that ( 11

(P + 1)/2

)
=

( −2

(P + 1)/2

)
.

Therefore ( (P + 1)/2

11

)
=

( 2

(P + 1)/2

)
.

By using the facts that (P + 1)/2 ≡ 1, 7 (mod 8) and P ≡ 4 (mod 11) we get

−1 =
(P + 1

11

)( 2

11

)
=

( (P + 1)/2

11

)
=

( 2

(P + 1)/2

)
= 1,

a contradiction. Let n = 12t+ 8. Then n = 12s− 4 with s > 0. Since 16 | U6, we
get 11x2 + 1 = Un ≡ −U4 (mod 16) by (2.1). By using the fact that 11x2 + 1 ≡
1, 4, 12, 13 (mod 16), we get P ≡ 1, 5 (mod 16). Assume that P ≡ 1 (mod 16).
Since n = 12s− 4 ,

11x2 = −1 + Un ≡ −1 + U4 (mod U3)

by (2.1). Then we have

11x2 ≡ −2 (mod (P + 1)/2),

which implies that ( 11

(P + 1)/2

)
=

( −2

(P + 1)/2

)
.

From here, we get ( (P + 1)/2

11

)
=

( 2

(P + 1)/2

)
.

Therefore

−1 =
(P + 1

11

)( 2

11

)
=

( (P + 1)/2

11

)
=

( 2

(P + 1)/2

)
= 1,

a contradiction. Now assume that P ≡ 5 (mod 16). Since n is even, n = 10q+r, r ∈
{0, 2, 4, 6, 8}. Using 11 | U5, we get 11x2 + 1 = Un ≡ Ur (mod 11) by (2.1). A
simple calculation shows that r = 4. And so n = 10q + 4. On the other hand,
since n = 12s − 4, it is easily seen thatn = 60k + 44 for some natural number k.
Therefore, n can be written as n = 20q1 + 4 for some natural number q1. Thus by
using (2.3), we get

Un = U20q1+4 ≡ U4 (mod V5),

which implies that

11x2 ≡ P 3 − 2P − 1 (mod P 4 − 5P 2 + 5)

since V5 = P (P 4 − 5P 2 + 5). This shows that( 11

P 4 − 5P 2 + 5

)
=

( P 3 − 2P − 1

P 4 − 5P 2 + 5

)
=

( (P 3 − 2P − 1)/2

P 4 − 5P 2 + 5

)
.

By using the facts that (P 3 − 2P − 1)/2 ≡ 1 (mod 8), P 4 − 5P 2 +5 ≡ 5 (mod 11),
P 4 − 5P 2 + 5 ≡ 9 (mod 16), and −3P 2 + P + 5 ≡ 7 (mod 16), we get

1 =
( 5

11

)
=

(P 4 − 5P 2 + 5

11

)
=

( 11

P 4 − 5P 2 + 5

)
=

( (P 3 − 2P − 1)/2

P 4 − 5P 2 + 5

)
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=
( P 4 − 5P 2 + 5

(P 3 − 2P − 1)/2

)
=

( −3P 2 + P + 5

(P 3 − 2P − 1)/2

)
=

( (P 3 − 2P − 1)/2

−3P 2 + P + 5

)
=

( P 3 − 2P − 1

−3P 2 + P + 5

)( 2

−3P 2 + P + 5

)
=

( P 3 − 2P − 1

−3P 2 + P + 5

)
=

(9(P 3 − 2P − 1)

−3P 2 + P + 5

)
=

( −2(P + 2)

−3P 2 + P + 5

)
=

( −2

−3P 2 + P + 5

)( P + 2

−3P 2 + P + 5

)
= −

( P + 2

−3P 2 + P + 5

)
=

(−3P 2 + P + 5

P + 2

)
=

( −9

P + 2

)
=

( −1

P + 2

)
= −1,

a contradiction. If n = 6q + 4, then we can write n = 12t + 4 or n = 12t + 10 for
some nonnegative integer t. Let n = 12t + 10. Then n = 12q1 − 2 with q1 > 0.
Since 16 | U6, we get 11x2 + 1 = Un ≡ −U2 (mod 16) by (2.1). Using the fact
that 11x2 + 1 ≡ 1, 4, 12, 13 (mod 16), it is seen that P ≡ 3, 15 (mod 16). Since
11x2 ≡ −1 + U−2 (mod U3) by (2.1), we get

11x2 ≡ −(P + 1) (mod P 2 − 1).

Therefore

11x2 ≡ −2 (mod P − 1),

which implies that ( 11

(P − 1)/2

)
=

( −2

(P − 1)/2

)
,

i.e., ( (P − 1)/2

11

)
=

( 2

(P − 1)/2
).

By using the fact that (P − 1)/2 ≡ 1, 7 (mod 8), we get

−1 = −
( 3

11

)
=

(P − 1

11

)( 2

11

)
=

( (P − 1)/2

11

)
=

( 2

(P − 1)/2

)
= 1,

a contradiction. Let n = 12t + 4. Since 16 | U6, we get Un ≡ U4 (mod 16) by
(2.1). This shows that 11x2 + 1 ≡ P 3 − 2P (mod 16). It can be easily seen that
P ≡ 11, 15 (mod 16) since 11x2 + 1 ≡ 1, 4, 12, 13 (mod 16). Assume that P ≡ 15
(mod 16). Then

11x2 = −1 + Un = −1 + U12t+4 ≡ −1 + U4 ≡ −(P + 1) (mod U3),

which implies

11x2 ≡ −2 (mod (P − 1)/2).

It follows that ( 11

(P − 1)/2

)
=

( −2

(P − 1)/2

)
and then ( (P − 1)/2

11

)
=

( 2

(P − 1)/2

)
.
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This is impossible since
(

2
(P−1)/2

)
= 1 and( (P − 1)/2

11
) =

(P − 1

11

)( 2

11

)
= −1.

Now assume that P ≡ 11 (mod 16). Since n is even, n = 10q + r with r ∈
{0, 2, 4, 6, 8}. Using 11 | U5, we get 11x2 + 1 = Un ≡ Ur (mod 11) by (2.1). A
simple calculation shows that r = 4. Thus n = 10q + 4. Since n = 12t+ 4, we get
n = 60k + 4 for some natural number k. Therefore by using (2.3), it is seen that

Un = U60k+4 ≡ U4 (mod V5),

which implies that

11x2 ≡ P 3 − 2P − 1 (mod P 4 − 5P 2 + 5)

since V5 = P (P 4 − 5P 2 + 5). This shows that( 11

P 4 − 5P 2 + 5

)
=

( P 3 − 2P − 1

P 4 − 5P 2 + 5

)
=

( (P 3 − 2P − 1)/4

P 4 − 5P 2 + 5

)
.

By using the facts that (P 3 − 2P − 1)/4 ≡ 3 (mod 4), P 4 − 5P 2 +5 ≡ 5 (mod 11),
P 4 − 5P 2 + 5 ≡ 9 (mod 16), and −3P 2 + P + 5 ≡ 3 (mod 16), we get

1 =
( 5

11

)
=

(P 4 − 5P 2 + 5

11

)
=

( 11

P 4 − 5P 2 + 5

)
=

( (P 3 − 2P − 1)/4

P 4 − 5P 2 + 5

)
=

( P 4 − 5P 2 + 5

(P 3 − 2P − 1)/4

)
=

( −3P 2 + P + 5

(P 3 − 2P − 1)/4

)
= −

( (P 3 − 2P − 1)/4

−3P 2 + P + 5

)
= −

( P 3 − 2P − 1

−3P 2 + P + 5

)
= −

(9(P 3 − 2P − 1)

−3P 2 + P + 5

)
= −

( −2(P + 2)

−3P 2 + P + 5

)
= −

( −2

−3P 2 + P + 5

)( P + 2

−3P 2 + P + 5

)
= −

( P + 2

−3P 2 + P + 5

)
= −

(−3P 2 + P + 5

P + 2

)
= −

( −9

P + 2

)
= −

( −1

P + 2

)
= −1,

a contradiction.

Case 3.4. Case IV. Let P 2 ≡ 9 (mod 11). Then P ≡ 3 (mod 11) by (3.2).
Since n is even, n = 6q + r for some q > 0 with r ∈ {0, 2, 4}. If n = 6q, then

11x2 + 1 = Un = U6q ≡ U0 (mod U3).

It follows that 11x2 ≡ −1 (mod 8) by (2.7), which is impossible. If n = 6q + 2,
then we can write n = 12t + 2 or n = 12t + 8 for some nonnegative integer t. Let
n = 12t+8. Then there exists positive integer q1 such that n = 12q1−4. Therefore
by using (2.3), it is seen that

Un = U12q1−4 ≡ ±U−4 (mod V2),

which implies that

11x2 ≡ −1 (mod P 2 − 2).
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Thus ( 11

P 2 − 2

)
=

( −1

P 2 − 2

)
and therefore (P 2 − 2

11

)
= 1,

which is impossible since P 2 − 2 ≡ 7 (mod 11). Let n = 12t + 2. Since 16 | U6,
we get 11x2 + 1 = Un ≡ U2 (mod 16) by (2.1). A simple calculation shows that
11x2 + 1 ≡ 1, 4, 12, 13 (mod 16). Since 11x2 + 1 ≡ P (mod 16), we get P ≡ 1, 13
(mod 16). Moreover,

11x2 = −1 + Un = −1 + U12t+2 ≡ −1 + U2 (mod U3)

by (2.1). This shows that

11x2 ≡ P − 1 (mod P + 1),

which implies

11x2 ≡ −2 (mod (P + 1)/2).

Then it follows that ( 11

(P + 1)/2

)
=

( −2

(P + 1)/2

)
.

Thus ( (P + 1)/2

11

)
=

( 2

(P + 1)/2

)
.

By using the facts that (P + 1)/2 ≡ 1, 7 (mod 8) and P + 1 ≡ 4 (mod 11), we get

−1 =
(P + 1

11

)( 2

11

)
=

( (P + 1)/2

11

)
=

( 2

(P + 1)/2

)
= 1,

a contradiction. If n = 6q + 4, then we can write n = 12t + 4 or n = 12t + 10 for
some nonnegative integer t. Let n = 12t+ 4. Then

11x2 = Un − 1 = U12t+4 − 1 ≡ ±U4 − 1 (mod V2),

which implies that

11x2 ≡ −1 (mod P 2 − 2).

Thus ( 11

P 2 − 2

)
=

( −1

P 2 − 2

)
and then (P 2 − 2

11

)
= 1.

This is impossible since P 2−2 ≡ 7 (mod 11). Let n = 12t+10. Then n = 12q1−2
with q1 > 0. Since 16 | U6, we get 11x2 + 1 = Un ≡ −U2 (mod 16) by (2.1).
Using the fact that 11x2 + 1 ≡ 1, 4, 12, 13 (mod 16), it is seen that P ≡ 3, 15
(mod 16). Since n is even, n = 10q + r with r ∈ {0, 2, 4, 6, 8}. Using 11 | U5, we
get 11x2 +1 = Un ≡ Ur (mod 11) by (2.1). A simple calculation shows that r = 6.
Thus n = 10q+6. Since n = 12t+4, we get n = 60k−14 for some natural number
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k. Thus n can be written as n = 20s+ 6 for some natural number s. Assume that
P ≡ 15 (mod 16). Then by using (2.3), it is seen that

Un = U20s+6 ≡ U6 (mod V5),

which implies that

11x2 ≡ P 5 − 4P 3 + 3P − 1 (mod P 4 − 5P 2 + 5)

since V5 = P (P 4 − 5P 2 + 5) and U6 = P 5 − 4P 3 + 3P . This shows that( 11

P 4 − 5P 2 + 5

)
=

(P 5 − 4P 3 + 3P − 1

P 4 − 5P 2 + 5

)
=

( P 3 − 2P − 1

P 4 − 5P 2 + 5

)
By using the facts that P 4 − 5P 2 + 5 ≡ 8 (mod 11), P 4 − 5P 2 + 5 ≡ 1 (mod 16),
−3P 2 +P +5 ≡ 1 (mod 16), and P 3 − 2P − 1 = 2ra with a odd and r > 4, we get

−1 =
( 8

11

)
=

(P 4 − 5P 2 + 5

11

)
=

( 11

P 4 − 5P 2 + 5

)
=

( P 3 − 2P − 1

P 4 − 5P 2 + 5

)
=

( 2ra

P 4 − 5P 2 + 5

)
=

( 2

P 4 − 5P 2 + 5

)r( a

P 4 − 5P 2 + 5

)
=

( a

P 4 − 5P 2 + 5

)
=

(P 4 − 5P 2 + 5

a

)
=

(−3P 2 + P + 5

a

)
=

( a

−3P 2 + P + 5

)
=

( 2

−3P 2 + P + 5

)r( a

−3P 2 + P + 5

)
=

( 2ra

−3P 2 + P + 5

)
=

( P 3 − 2P − 1

−3P 2 + P + 5

)
=

(9(P 3 − 2P − 1)

−3P 2 + P + 5

)
=

( −2(P + 2)

−3P 2 + P + 5

)
=

( −2

−3P 2 + P + 5

)( P + 2

−3P 2 + P + 5

)
=

( P + 2

−3P 2 + P + 5

)
=

(−3P 2 + P + 5

P + 2

)
=

( −9

P + 2

)
=

( −1

P + 2

)
= −1,

a contradiction. Now assume that P ≡ 3 (mod 16). Then by using (2.3), we get

11x2 = Un − 1 = U60k−14 − 1 ≡ U−14 − 1 ≡ −(U14 + 1) (mod V15),

which implies that

11x2 ≡ −(U14 + 1) (mod P 8 − 7P 6 + 14P 4 − 8P 2 + 1)

since V15 = P (P 4 − 5P 2 + 5)(P 2 − 3)(P 8 − 7P 6 + 14P 4 − 8P 2 + 1). Moreover, it
can be shown that

(3.3) −(U14 + 1) ≡ −(P 5 − 5P 3 + 6P + 1) (mod P 8 − 7P 6 + 14P 4 − 8P 2 + 1).

Therefore we get

11x2 ≡ −(P 5 − 5P 3 + 6P + 1) (mod P 8 − 7P 6 + 14P 4 − 8P 2 + 1)

by (3.4) and (3.3). Thus( 11

P 8 − 7P 6 + 14P 4 − 8P 2 + 1

)
=

( −(P 5 − 5P 3 + 6P + 1)

P 8 − 7P 6 + 14P 4 − 8P 2 + 1

)
,
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which implies that

(3.4)
(P 8 − 7P 6 + 14P 4 − 8P 2 + 1

11

)
=

( P 5 − 5P 3 + 6P + 1

P 8 − 7P 6 + 14P 4 − 8P 2 + 1

)
.

By using the facts that

P 8 − 7P 6 + 14P 4 − 8P 2 + 1 ≡ 2 (mod 11),

P 8 − 7P 6 + 14P 4 − 8P 2 + 1 ≡ 1 (mod 8),

P 4 + P 3 − 2P 2 − 2P − 1 ≡ 3 (mod 8),

P 3 + P 2 − 3P − 1 ≡ 2 (mod 8),

and P 2 − P − 1 ≡ 5 (mod 8), from (3.4), it is seen that

−1 =
( 2

11

)
=

(P 8 − 7P 6 + 14P 4 − 8P 2 + 1

11

)
=

( P 5 − 5P 3 + 6P + 1

P 8 − 7P 6 + 14P 4 − 8P 2 + 1

)
=

( P − 1

P 8 − 7P 6 + 14P 4 − 8P 2 + 1

)( P 4 + P 3 − 2P 2 − 2P − 1

P 8 − 7P 6 + 14P 4 − 8P 2 + 1

)
=

( (P − 1)/2

P 8 − 7P 6 + 14P 4 − 8P 2 + 1

)(P 8 − 7P 6 + 14P 4 − 8P 2 + 1

P 4 + P 3 − 2P 2 − 2P − 1

)
=

(P 8 − 7P 6 + 14P 4 − 8P 2 + 1

(P − 1)/2

)( −2(P 3 + P 2 − 3P − 1)

P 4 + P 3 − 2P 2 − 2P − 1

)
=

( 1

(P − 1)/2

)( −2(P 3 + P 2 − 3P − 1)

P 4 + P 3 − 2P 2 − 2P − 1

)
=

( −2

P 4 + P 3 − 2P 2 − 2P − 1

)( P 3 + P 2 − 3P − 1

P 4 + P 3 − 2P 2 − 2P − 1

)
=

( P 3 + P 2 − 3P − 1

P 4 + P 3 − 2P 2 − 2P − 1

)
= −

( (P 3 + P 2 − 3P − 1)/2

P 4 + P 3 − 2P 2 − 2P − 1

)
= −

(P 4 + P 3 − 2P 2 − 2P − 1

(P 3 + P 2 − 3P − 1)/2

)
= −

( P 2 − P − 1

(P 3 + P 2 − 3P − 1)/2

)
= −

( (P 3 + P 2 − 3P − 1)/2

P 2 − P − 1

)
=

(P 3 + P 2 − 3P − 1

P 2 − P − 1

)
=

( 1

P 2 − P − 1

)
= 1,

a contradiction. Therefore n = 2. Now assume that n > 3 and n is odd. Then n =
2m+1 for some m > 1. Since Un = 11x2+1, we get 11x2 = U2m+1− 1 = UmVm+1

by (2.11). Let m be odd. Then (Um, Vm+1) = 1 by (2.12) and (2.13). Thus

(3.5) Um = a2 and Vm+1 = 11b2

or

(3.6) Um = 11a2 and Vm+1 = b2

for some integers a and b. The identities (3.5) and (3.6) are impossible by Lemma
3.1 and Theorem 2.3, respectively. Let m be even. Then (Um, Vm+1) = P by (2.13).
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Thus

(3.7) Um = Pa2 and Vm+1 = 11Pb2

or

(3.8) Um = 11Pa2 and Vm+1 = Pb2.

for some integers a and b. The identities (3.7) and (3.8) are impossible by Lemma
3.2 and Theorem 2.1, respectively. Therefore n 6 3. If n = 3, we get P 2 − 1 =
U3 = 11x2 + 1, which implies that P 2 ≡ 2 (mod 11). This is impossible. Thus
n = 1. As a consequence, we get n = 1 or n = 2. �
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