REFINEMENTS OF SOME LIMIT HARDY-TYPE INEQUALITIES VIA SUPERQUADRACITY

James Adedayo Oguntuase, Lars-Erik Persson, Olabiyi Olanrewaju Fabelurin, and Abdullaziz G. Adeagbo-Sheikh

Abstract. Refinements of some limit Hardy-type inequalities are derived and discussed using the concept of superquadracity. We also proved that all three constants appearing in the refined inequalities obtained are sharp. The natural turning point of our refined Hardy inequality is \(p = 2 \) and for this case we have even equality.

1. Introduction

G. H. Hardy stated in [5] and finally proved in [6] the following classical inequality: For any \(p > 1 \) and any integrable function \(f(x) > 0 \) on \((0, \infty)\), the inequality

\[
\int_0^\infty \left(\frac{1}{x} \int_0^x f(t)dt \right)^p dx \leq \left(\frac{p}{p-1} \right)^p \int_0^\infty f^p(x)dx,
\]

holds, where the constant \(\left(\frac{p}{p-1} \right)^p \) is the best possible.

Since then, Hardy’s inequality has been extensively studied. Consequently, there abounds nowadays in literature a lot of information about Hardy’s inequality comprising both its generalizations and applications in different ways (see e.g. [8–10] and the references given therein).

However, there exists very few Hardy-type inequalities with sharp constants in the limit case and when the interval \((0, \infty)\) is replaced by a finite interval \((0, l)\), \(l < \infty \). We now proceed to give some known examples of such Hardy-type inequalities.

2010 Mathematics Subject Classification: Primary 34A34; Secondary 34D20; 34D23; 34D99.

Key words and phrases: Hardy-type inequalities, superquadratic functions, sharp constants, weight functions.

We thank the careful referee for some comments and suggestions, which have improve the final version of this paper.

Communicated by ...

1
In 1928, Hardy himself (see [7]) proved the following first weighted version of (1.1) as follows:

\[(1.2) \quad \int_0^\infty \left(\frac{1}{x} \int_0^x f(t) dt \right)^p x^a dx \leq \left(\frac{p}{p-a-1} \right)^p \int_0^\infty f^p(x) x^a dx\]

holds for all measurable and non-negative functions \(f\) on \((0, \infty)\) whenever \(a < p - 1, p \geq 1\).

Hardy obviously thought that (1.2) is a generalization of (1.1), however, recently in Persson and Samko [12], it was pointed out that this is not genuinely true since (1.2) is indeed equivalent to (1.1) through some suitable substitutions and variable transformations. In the same paper [12], Persson and Samko stated and proved the following result: Let \(g\) be a nonnegative and measurable function on \((0, l), 0 < l \leq \infty\). If \(p < 0\) or \(p \geq 1\), then the inequality

\[(1.3) \quad \int_0^l \left(\frac{1}{x} \int_0^x g(y) dy \right)^p dx \leq 1 \cdot \int_0^l g^p(x) \left(1 - \frac{x}{l} \right) \frac{dx}{x}\]

holds while in the case \(p < 0\) we assume that \(g(x) > 0\), \(0 < x \leq l\). Furthermore, (1.3) is equivalent to the following sharp local variant of inequality (1.2):

\[
\int_0^l \left(\frac{1}{x} \int_0^x f(y) dy \right)^p dx \leq \left(\frac{p}{p-1-a} \right)^p \int_0^1 f^p(x) \left(1 - \left(\frac{x}{l} \right)^\frac{p-a-1}{p} \right) dx,
\]

where the constant \(\left(\frac{p}{p-1-a} \right)^p\) is sharp.

Throughout this paper we shall assume that \(\log\) is the natural logarithm. In [3], Bennett proved that if \(a > 0, 1 \leq p < \infty\), and \(f\) is a nonnegative measurable function on \([0, 1]\), then the inequalities

\[(1.4) \quad \int_0^1 \left[\log \frac{e}{x} \right]^{\alpha p - 1} \left(\int_0^x f(y) dy \right)^p \frac{dx}{x} \leq \alpha^{-p} \int_0^1 x^p \left[\log \frac{e}{x} \right]^{(1+\alpha)p-1} f^p(x) \frac{dx}{x}\]

and

\[(1.5) \quad \int_0^1 \left[\log \frac{e}{x} \right]^{-\alpha p - 1} \left(\int_x^1 f(y) dy \right)^p \frac{dx}{x} \leq \alpha^{-p} \int_0^1 x^p \left[\log \frac{e}{x} \right]^{(1-\alpha)p-1} f^p(x) \frac{dx}{x}\]

hold. These inequalities hold also with the usual modifications if \(p = \infty\) see [2], where it was also proved that the constant \(\alpha^{-p}\) is sharp. For \(p = \infty\) you just raise both sides of (1.4) and (1.5) to power \(1/p\) and let \(p \to \infty\) to get the usual supremum interpretation of (1.4) and (1.5) for \(p = \infty\). We refer interested readers to papers [2, 4, 11] for more information about the proofs and applications of inequalities (1.4) and (1.5).

In a recent paper Barza et al. [2] obtained some refinements and extensions of inequalities (1.4) and (1.5). Specifically, the following inequalities are derived and proved:

\[(1.6) \quad \alpha^{p-1} \left(\int_0^1 f(x) dx \right)^p + \alpha^p \int_0^1 \left[\log \frac{e}{x} \right]^{\alpha p - 1} \left(\int_0^x f(y) dy \right)^p \frac{dx}{x} \leq \int_0^1 x^p \left[\log \frac{e}{x} \right]^{(1+\alpha)p-1} f^p(x) \frac{dx}{x}\]
and

\[(1.7) \quad \alpha^{-1} \left(\int_0^1 f(x)dx \right)^p + \alpha^p \int_0^1 \left[\log \frac{e}{x} \right]^{-\alpha p} \left(\int_x^1 f(y)dy \right)^p \frac{dx}{x} \leq \int_0^1 x^p \left[\log \frac{e}{x} \right]^{-\alpha p - 1} f^p(x) \frac{dx}{x}, \]

where \(f \) is a nonnegative measurable function on \([0, 1]\). Both constants \(\alpha^{-1} \) and \(\alpha^p \) in (1.6) and (1.7) are sharp.

The motivation for the current paper comes from the works of Bennett [3] and Barza et al. [2]. The aim of this paper is to obtain some further refinements and extensions of inequalities (1.6) and (1.7). These inequalities have some remarkable properties e.g., that now the natural “turning point” (the point where the inequality reverses) now is \(p = 2 \) while all other inequalities above have turning point \(p = 1 \).

Another remarkable property is that our new inequalities contain three constants and all are sharp.

This paper is organized as follows: In Section 2, we present our main result (Theorem 2.1) which is a refined version of inequalities (1.4), (1.5), (1.6), and (1.7) via superquadracity argument (see Proposition 2.1 below). This Proposition is then employed to prove our main result which have refinement terms not present in the results of Bennett [3] and Barza et al [2]. This inequality has the remarkable property that it holds in the reversed direction for \(1 < p \leq 2 \) so that for \(p = 2 \) we get a new identity (cf. Remark 3.1). Moreover, we also show that the constants involved are all sharp. In Section 3, a further result and some examples and remarks are presented.

2. Some inequalities involving superquadratic and subquadratic functions

Definition 2.1 ([1], Definition 2.1). A function \(\Phi : [0, \infty) \to \mathbb{R} \) is said to be superquadratic provided that for all \(x \geq 0 \) there exists a constant \(C_x \in \mathbb{R} \) such that

\[\Phi(y) - \Phi(x) - C_x(y - x) - \Phi(|y - x|) \geq 0 \]

for all \(y \geq 0 \). \(\Phi \) is subquadratic if \(-\Phi \) is superquadratic. A function \(f : [0, \infty) \to \mathbb{R} \) is superadditive provided \(f(x + y) \geq f(x) + f(y) \) for all \(x, y \geq 0 \). If the reverse inequality holds, then \(f \) is said to be subadditive.

Lemma 2.1 (See [1], Lemma 2.2). Let \(\Phi(x) : [0, \infty) \to \mathbb{R} \) be a superquadratic function with \(C_x \) as in Definition 2.1.

1. Then \(\Phi(0) \leq 0 \).
2. If \(\Phi(0) = \Phi'(0) = 0 \), then \(C_x = \Phi'(x) \) whenever \(\Phi \) is differentiable at \(x > 0 \).
3. If \(\Phi \geq 0 \), then \(\Phi \) is convex and \(\Phi(0) = \Phi'(0) = 0 \).

Here and in the sequel the notation \(\Phi'(0) \) means \(\Phi'_x(0) \).
Lemma 2.2 (See [1], Lemma 3.1). Suppose $\Phi : [0, \infty) \to \mathbb{R}$ is continuously differentiable and that $\Phi(0) \leq 0$. If Φ' is superadditive or \(\frac{\Phi'(x)}{x} \) is nondecreasing, then Φ is superquadratic.

Before we state our main result, we state the following Proposition which is of independent interest and very useful in the proof of our main result.

Proposition 2.1. Let $\Phi : [0, 1) \to \mathbb{R}$ be a differentiable function such that $\Phi(0) = \Phi'(0) = 0$. Then

\[
(\Phi(y) - \Phi(1)) - \Phi'(1)(y - 1) - \Phi(|y - 1|) \begin{cases}
\geq 0 & \text{if } \Phi \text{ superquadratic} \\
\leq 0 & \text{if } \Phi \text{ subquadratic},
\end{cases}
\]

holds for all $y \geq 0$. If $\Phi(x) = x^p$, then equality in (2.1) hold for all y if and only if $p = 2$.

Proof. Since $\Phi(x)$ is differentiable, it follows from Definition 2.1 and Lemma 2.1 that for $x = 1$, there exists a constant $C_1 = \Phi'(1)$ such that

$\Phi(y) - \Phi(1) - \Phi'(1)(y - 1) - \Phi(|y - 1|) \geq 0$

holds for all $y \geq 0$ whenever Φ is superquadratic. The proof of the case when Φ is subquadratic is similar to the one given above except that the inequality sign is reversed. The claimed equality case is obvious.

Remark 2.1. By setting $\Phi(x) = x^p$, in Proposition 2.1, then we have by Lemma 2.2, that x^p is superquadratic if $p \geq 2$ and subquadratic if $1 < p \leq 2$. Furthermore, Proposition 2.1 implies the following result:

Lemma 2.3. Let $h > 0$, then

\[
h^p - p(h - 1) - 1 - |h - 1|^p \begin{cases}
\geq 0 & \text{if } p \geq 2 \\
\leq 0 & \text{if } 1 < p \leq 2.
\end{cases}
\]

Equality holds for all $h > 0$ in (2.2) if and only if $p = 2$ and when $p \neq 2$ if and only if $h = 1$.

Proof. Apply Proposition 2.1 with $\Phi(x) = x^p, p > 1$. Then, we find that (2.2) holds and equality holds if $p = 2$ and when $p \neq 2, h = 1$. The “only if” part follows by considering the function

$f(h) = h^p - p(h - 1) - 1 - (h - 1)^p$

and noting that $f(h)$ is increasing for $p \geq 2$, decreasing for $p \leq 2$ and $f(1) = 1$.

Our main result reads:

Theorem 2.1. Let $\alpha, p > 1$ and f be a non-negative and measurable function on $[0, 1]$.

1. If $p \geq 2$, then

\[
\alpha^{p-1}\left(\int_0^1 f(x)dx\right)^p + \alpha \int_0^1 \left[\log \frac{x}{e}\right]^{\alpha p-1} \left(\int_0^x f(y)dy\right)^p f(x)dx \leq \frac{x}{e}.
\]

\[
\int_0^1 \left| x \log \frac{e}{x} f(x) - \alpha \int_0^x f(y) dy \right|^p \left(\log \frac{e}{x} \right)^{(1+\alpha)p-1} \frac{dx}{x} \leq \int_0^1 x^p \left(\log \frac{e}{x} \right)^{(1+\alpha)p-1} f^p(x) \frac{dx}{x}
\]

and

\[
\alpha^{p-1} \left(\int_0^1 f(x) dx \right)^p + \alpha^p \int_0^1 \left[\log \frac{e}{x} \right]^{-\alpha p-1} \left(\int_x^1 f(y) dy \right)^p \frac{dx}{x} \]

\[
+ \int_0^x \left| x \log \frac{e}{x} f(x) - \alpha \int_0^x f(y) dy \right|^p \left[\log \frac{e}{x} \right]^{-\alpha p-1} \frac{dx}{x} \leq \int_0^1 x^p \left[\log \frac{e}{x} \right]^{(1-\alpha)p-1} f^p(x) \frac{dx}{x}.
\]

All constants \(\alpha^{p-1}, \alpha^p \) and 1 in front of the integrals on the left hand side in (2.3) and (2.4) are sharp. If \(p > 2 \), then equality is never attained unless \(f \) is identically zero.

(2) If \(1 < p \leq 2 \), then both (2.3) and (2.4) hold in the reverse direction and the constants in both inequalities are sharp. Also in this case all constants \(\alpha^{p-1}, \alpha^p \) and 1 in front of the integrals on the left hand side of reversed inequalities (2.3) and (2.4) are sharp. If \(1 < p < 2 \), then equality is never attained unless \(f \) is identically zero.

(3) If \(p = 2 \) we have equality in (2.3) and (2.4) for any measurable function \(f \) and any \(\alpha > 1 \).

Proof. (a) Let \(p > 1 \). Suppose that \(f \) is continuous and nonnegative. Then define for \(x \in (0,1] \) the function \(F \) by

\[
F(x; \alpha, p) := \int_0^x y^p \left[\log \frac{e}{y} \right]^{(1+\alpha)p-1} f^p(y) \frac{dy}{y} - \alpha^{p-1} \left(\log \frac{e}{x} \right)^{\alpha p} \left(\int_0^x f(y) dy \right)^p \]

\[
- \alpha^p \int_0^x \left[\log \frac{e}{y} \right]^{\alpha p-1} \left(\int_0^y f(s) ds \right)^p \frac{dy}{y} \]

\[
- \int_0^x \left| y \log \frac{e}{y} f(y) - \alpha \int_0^y f(s) ds \right|^p \left[\log \frac{e}{y} \right]^{\alpha p-1} \frac{dy}{y}.
\]

Differentiating (2.5) yields that

\[
\frac{d}{dx} F(x; \alpha, p) = x^p \left[\log \frac{e}{x} \right]^{(1+\alpha)p-1} f^p(x) \frac{1}{x} \]

\[
+ \frac{p}{x} \alpha^p \left[\log \frac{e}{x} \right]^{\alpha p-1} \left(\int_0^x f(y) dy \right)^p \]

\[
- \alpha^{p-1} \left(\log \frac{e}{x} \right)^{\alpha p} \left(\int_0^x f(y) dy \right)^{p-1} \]

\[
- \alpha^p \left[\log \frac{e}{x} \right]^{\alpha p-1} \left(\int_0^x f(s) ds \right)^p \frac{1}{x} \]
We assume without restriction that $f(t) > 0$, $t > 0$ (if not we first assume this and use a limit argument). By putting

$$h(x, \alpha) := \frac{x(\log \frac{x}{x}) f(x)}{\alpha \int_0^x f(y) dy},$$

in (2.6) we obtain that

$$\frac{d}{dx} F(x; \alpha, p) = \alpha^p \left[\log \frac{e}{x} \right]^{\alpha p-1} \left(\int_0^x f(s) ds \right)^{p - 1/x} \times [h^p(x; \alpha) - p(h(x; \alpha) - 1) - 1 - |h(x; \alpha) - 1|^p].$$

Hence, by Lemma 2.3, we have that

$$\frac{d}{dx} F(x; \alpha, p) > 0.$$

That is $F(x; \alpha, p)$ is strictly increasing. In particular

$$F(1; \alpha, p) \geq \lim_{x \to 0^+} F(x; \alpha, p).$$

We claim that

$$\lim_{x \to 0^+} F(x; \alpha, p) = 0.$$

To justify our claim, we use Hölder’s inequality in the following form:

$$\int_0^x f_1(y) f_2(y) dy \leq \left(\int_0^x |f_1|^p dy \right)^{1/p} \left(\int_0^x |f_2|^{p'} dy \right)^{1/p'},$$

holds for all continuous functions f, g and for all $p > 1, p' > 1$ such that $1/p + 1/p' = 1$. If we let

$$f_1(y) = y^{-1/p} \left(\log \frac{e}{y} \right)^{\alpha + 1 - 1/p} f(y),$$

$$f_2(y) = y^{-1/p} \left(\log \frac{e}{y} \right)^{-\alpha - 1 + 1/p},$$

then with p and $p' = p/(p - 1)$, we find that the above Hölder’s inequality (2.7) gives that

$$\int_0^x f(y) dy = \int_0^x \left(y^{-1/p} \left(\log \frac{e}{y} \right)^{\alpha + 1 - 1/p} f(y) \right) \left(y^{-1/p} \left(\log \frac{e}{y} \right)^{-\alpha - 1 + 1/p} \right) dy$$

$$\leq \left(\int_0^x y^{p-1} \left(\log \frac{e}{y} \right)^{(1+\alpha)p-1} f^p(y) dy \right)^{1/p}$$

$$\left(\int_0^x \frac{1}{y} \left(\log \frac{e}{y} \right)^{-\alpha(p-1)-1} \right)^{(p-1)/p}$$

$$= \left(\int_0^x y^{p-1} \left(\log \frac{e}{y} \right)^{(1+\alpha)p-1} f^p(y) dy \right)^{1/p}$$

$$\left(\frac{p-1}{\alpha p} \right)^{(p-1)/p} \left(\log \frac{e}{x} \right)^{-\alpha(p-1)-1} \left(\log \frac{e}{x} \right)^{(1+\alpha)p-1}$$

$$\left(\log \frac{e}{x} \right)^{-\alpha(p-1)-1} \left(\log \frac{e}{x} \right)^{(1+\alpha)p-1}$$
\[\begin{align*}
&= \left(\int_0^x y^{p-1} \left(\log \frac{e}{y} \right)^{(1+\alpha)p-1} f^p(y)dy \right)^{1/p} \left(\frac{p - 1}{\alpha p} \right)^{(p-1)/p} \left(\log \frac{e}{x} \right)^{-\alpha}.
\end{align*} \]

Hence, we get that
\[(2.8) \quad 0 < \left(\log \frac{e}{x} \right) \alpha^p \left(\int_0^x f(y)dy \right)^p \leq \left(\frac{p - 1}{\alpha p} \right)^{p-1} \left(\int_0^x y^{p-1} \left(\log \frac{e}{y} \right)^{(1+\alpha)p-1} f^p(y)dy \right)^{1/p} \alpha^p \]

Taking the limit of (2.8) as \(x \to 0^+ \), we obtain that
\[\lim_{x \to 0^+} \left(\left(\log \frac{e}{x} \right) \alpha^p \left(\int_0^x f(y)dy \right)^p \right) = 0. \]

This consequently implies that
\[\lim_{x \to 0^+} F(x; \alpha, p) = 0 \]
and, in particular that,
\[F(1; \alpha, p) \geq \lim_{x \to 0^+} F(x; \alpha, p) = 0. \]

Hence, we have proved that (2.3) holds for all continuous functions. By standard approximating arguments, (2.3) holds for all measurable functions.

Now we proceed to prove that the constants in the inequality (2.3) are all sharp. To this end assume on the contrary that (2.3) holds for some constants \(C_1, C_2 \) such that \(0 < C_1, C_2 < \infty \) and \(C_2 > \alpha^p \), i.e.,
\[(2.9) \quad C_1 \left(\int_0^1 f(x)dx \right)^p + C_2 \int_0^1 \left[\log \frac{e}{x} \right] \alpha^p \left(\int_0^x f(y)dy \right)^p \frac{dx}{x} \]
\[+ \int_0^1 \left| x \log \frac{e}{x} f(x) - \alpha \int_0^x f(y)dy \right|^p \left[\log \frac{e}{x} \right] \alpha^p \frac{dx}{x} \]
\[\leq \int_0^1 x^p \left(\log \frac{e}{x} \right)^{(1+\alpha)p-1} f^p(x) \frac{dx}{x}. \]

By using the test function,
\[(2.10) \quad f_\epsilon(x) := \frac{1}{x} \left(\log \frac{e}{x} \right)^{-(1+\epsilon+\alpha)}, \quad \epsilon > 0 \]
we find that (after some calculations) that inequality (2.9) yields
\[\frac{C_1}{(\epsilon + \alpha)^p} + \frac{C_2}{\epsilon p (\epsilon + \alpha)^p} + \frac{\epsilon^p}{p (\epsilon + \alpha)^p} \leq \frac{1}{\epsilon^p} \]
i.e., that
\[\epsilon p C_1 + C_2 + \epsilon^p \leq (\epsilon + \alpha)^p. \]

By letting \(\epsilon \to 0^+ \), we obtain that \(C_2 \leq \alpha^p \), a contradiction. Thus, the constant \(C_2 = \alpha^p \) in (2.9) is sharp. We assume now that (2.9) holds with \(C_2 = \alpha^p \) for some \(C_1 > \alpha^{p-1} \) and use the same test function \(f_\epsilon \) in (2.10) to obtain that
\[\frac{C_1}{(\epsilon + \alpha)^p} + \frac{\alpha^p}{\epsilon p (\epsilon + \alpha)^p} + \frac{\epsilon^p}{(\epsilon + \alpha)^p \epsilon p} \leq \frac{1}{\epsilon^p} \]
i.e.,
\[C_1 \leq \frac{(\epsilon + \alpha)p - \epsilon^p - \alpha^p}{\epsilon p} \]

Hence, by letting \(\epsilon \to 0^+ \), we find that
\[C_1 \leq \lim_{\epsilon \to 0^+} \left(\frac{(\epsilon + \alpha)p - \epsilon^p - \alpha^p}{\epsilon p} \right) = \frac{1}{p} \lim_{\epsilon \to 0^+} \frac{(\epsilon + \alpha)p - \epsilon^p - \alpha^p}{\epsilon} = \frac{1}{p} \lim_{\epsilon \to 0^+} \epsilon^{p-1} = \alpha^{p-1}. \]

This contradiction shows that \(C_1 = \alpha^{p-1} \) is the sharp constant in (2.3). The fact that also the constant \(C_3 = 1 \) in front of the third integral in (2.3) is sharp follows in a similar way. In fact, consider (2.3) with the constants \(C_1 = \alpha^{p-1}, C_2 = \alpha^p \) and \(C_3 > 1 \). Then, by using the same test functions \(f_\epsilon(x) \) as above and letting \(\epsilon \to 0^+ \), we get a contradiction. It is clear from Lemma 2.1 that if \(p > 2 \) we cannot have equality in (2.3) unless \(f \) is identically zero. The proof of (2.4) is similar. For this case we consider
\[G(x, \alpha, p) := \int_0^x y^p \left[\log \left(\frac{e}{y} \right) \right]^{(1-\alpha)p-1} f^p(y) \frac{dy}{y} \]
\[- \alpha^{p-1} \left(\log \left(\frac{e}{x} \right) \right)^{-\alpha p} \left(\int_0^x f(s)ds \right)^p \]
\[- \alpha^p \int_0^x \left(\log \left(\frac{e}{y} \right) \right)^{-\alpha p-1} \left(\int_y^1 f(s)ds \right)^p \frac{dy}{y} \]
\[- \int_0^x y \log \left(\frac{e}{y} \right) f(y) - \alpha \int_0^x f(y) dy | f \left[\log \left(\frac{e}{y} \right) \right]^{-\alpha p-1} dy \frac{dy}{y} \]
and argue in a similar way as above. Also, the proof of the sharpness of the constants \(\alpha^{p-1}, \alpha^p \) and 1 and cases of equality is similar as before so we omit the details.

(b) For the case \(1 < p \leq 2 \), the crucial inequality (2.2) holds in the reversed direction (see Lemma 2.3). Hence, the reverse of inequality (2.3) holds in this case. Moreover, the proof of the sharpness of the constants \(\alpha^{p-1}, \alpha^p \) and 1 and cases of equality only consist of obvious modifications of the proof above so we leave out the details.

(c) The proof of equality for the case \(p = 2 \) is just an easy consequence and modification of the proof above. \(\square \)

3. Concluding result, remarks and examples

We put
\[I_1 = \alpha^{p-1} \left(\int_0^1 f(x) dx \right)^p + \alpha^p \int_0^1 \left[\log \left(\frac{e}{x} \right) \right]^{\alpha p-1} \left(\int_0^x f(y) dy \right)^p \frac{dx}{x} \]
\[I_2 = \int_0^1 x \log \left(\frac{e}{x} \right) f(x) - \alpha \int_0^x f(y) dy \left[\log \left(\frac{e}{x} \right) \right]^{\alpha p-1} \frac{dx}{x} \]
and
\[I_3 = \int_0^1 x^p \left(\log \left(\frac{e}{x} \right) \right)^{(1+\alpha)p-1} f^p(x) \frac{dx}{x}. \]
In particular, our result implies the following new information for the limit case of Hardy’s inequality:

Example 3.1.
1. If \(p \geq 2 \), then the Bennett and Barza et al. estimate \(I_1 \leq I_3 \) is improved to \(I_1 + I_2 \leq I_3 \).
2. For the case \(1 < p \leq 2 \) the Bennett and Barza et al. estimate \(I_1 \leq I_3 \) is even turned to the two-sided estimate \(I_1 \leq I_3 \leq I_1 + I_2 \).
3. For the case \(p = 2 \) we get the remarkable new identity \(I_3 = I_1 + I_2 \).

Remark 3.1. The natural “turning point” (when equality sign is reversed) in Hardy type inequalities is \(p = 1 \). The example above is the only example so far of a limit Hardy type inequality where the turning point is \(p = 2 \). A similar example of limit Hardy inequality with turning point \(p = 2 \) as that in Example 3.1 can be obtained by using (1.7) and (2.4) in a similar way as above.

Remark 3.2. All four inequalities in Theorem 2.1 contain three constants in front of the integrals on the left hand side and all are sharp. This is the only inequality in the literature on Hardy type inequalities with this property.

Proposition 3.1. Let \(f \) be a positive and measurable function on \((0, 1)\) and let \(u \) and \(v \) be two weight functions on \((0, 1)\) such that
\[
u(y) = \int_y^1 \frac{v(x)}{x^2} \, dx.
\]
If \(\Psi : [0, \infty) \to \mathbb{R} \) is a non-negative superquadratic function, then
\[
(3.1) \quad \int_0^1 \Psi \left(\frac{1}{x} \int_0^x f(y) \, dy \right) \frac{v(x)}{x} \, dx \leq \int_0^1 \Psi(f(x))u(x) \frac{dx}{x} - \int_0^1 \int_y^1 \Psi \left(|f(y) - \frac{1}{x} \int_0^y f(y) \, dy| \right) \frac{v(x)}{x^2} \, dx \, dy.
\]

If \(\Psi \) is subquadratic, then inequality (3.1) holds in the reverse direction. Moreover, in the inequality (3.1) and the reverse inequality for subquadratic \(\Psi \), equality holds for \(f \equiv C, C > 0 \).

Proof. By using the refined Jensen’s inequality of Abramovich et al. [1] for a superquadratic function \(\Psi \) and Fubini’s theorem, we find that
\[
\int_0^1 \Psi \left(\frac{1}{x} \int_0^x f(y) \, dy \right) \frac{v(x)}{x} \, dx \leq \int_0^1 \Psi(f(y)) \left(\int_y^1 \frac{v(x)}{x^2} \, dx \right) \, dy
\]
\[
- \int_0^1 \int_y^1 \Psi \left(|f(y) - \frac{1}{x} \int_0^y f(y) \, dy| \right) \frac{v(x)}{x^2} \, dx \, dy,
\]
i.e.,
\[
\int_0^1 \Psi \left(\frac{1}{x} \int_0^x f(y) \, dy \right) \frac{v(x)}{x} \, dx \leq \int_0^1 \Psi(f(y))u(y) \frac{dy}{y}
\]
\[
- \int_0^1 \int_y^1 \Psi \left(|f(y) - \frac{1}{x} \int_0^y f(y) \, dy| \right) \frac{v(x)}{x^2} \, dx \, dy.
\]
The proof for the case when Ψ is subquadratic follows similarly, except that the only inequality above holds in the reverse direction. By substituting $f \equiv C$ in inequality (3.1), we have after some easy calculations that equality holds in (3.1).

Example 3.2. By using Proposition 3.1 with the superquadratic function $\Psi(x) = x^p, p > 2$, for $v(x) = x^p(\log x)^{op-1}$, we find that

$$I_4 := \int_0^1 \left(\frac{e^x}{x} \right)^{op-1} \left(\int_0^x f(y)dy \right)^p \frac{dx}{x} \leq \int_0^1 f^p(x)u(x) \frac{dx}{x}$$

$$\qquad \qquad \qquad - \int_0^1 \int_y^1 \int_y^x f(y) - \int_y^x f(y)dy \left(\frac{e^{x^{-1}}}{x} \right)^{op-1} \int_0^x f(y)dy \frac{dx}{x^2} \frac{dy}{x} =: I_5$$

where

$$u(x) := x \int_x^1 x^{p-2} \left(\frac{e^{x^{-1}}}{y} \right)^{op-1} \frac{dy}{y}.$$

Remark 3.3. If we put

$$I_6 := \alpha^{-p} \int_0^1 x^p \left[\log \frac{x}{y} \right]^{(1+\alpha)p-1} f^p(x) \frac{dx}{x} - \alpha^{-1} \left(\int_0^1 f(x)dx \right)^p$$

$$\qquad \qquad \qquad - \alpha^{-p} \int_0^1 x \log \frac{x}{y} f(x) - \alpha \int_0^x f(y)dy \left[\log \frac{x}{y} \right]^{op-1} \frac{dx}{x},$$

then, it follows from Example 3.2 and inequality (2.3) that we have the following strict improvement of inequality (2.3),

$$I_4 \leq \min(I_5, I_6),$$

where I_4, I_5 and I_6 are as defined above and $p > 2$.

References

6. **Notes on some points in the integral calculus, LX. An inequality between integrals**, Messenger Math. 54 (1925), 150–156.

7. **Notes on some points in the integral calculus, LXIV. Further inequalities between integrals**, Messenger Math. 57 (1928), 12–16.

Department of Mathematics
Federal University of Agriculture
Abeokuta
Nigeria
oguntuase@yahoo.com

Department of Mathematics
Luleå University of Technology
Luleå
Sweden;
UiT The Arctic University of Norway
Narvik
Norway
larserik@ltu.se

Department of Mathematics
Obafemi Awolowo University
Ile-Ife
Nigeria
fabelur@yahoo.com

Department of Mathematics
Obafemi Awolowo University
Ile-Ife
Nigeria
adesheikh2000@yahoo.co.uk