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THE REMAINDER TERM OF
GAUSS–RADAU QUADRATURE RULE

WITH SINGLE AND DOUBLE END POINT

Ljubica Mihić

Abstract. The remainder term of quadrature formula can be represented as

a contour integral with a complex kernel. We study the kernel on elliptic con-
tours for Gauss–Radau quadrature formula with Chebyshev weight function

of the second kind with double and single end point. Starting from the ex-

plicit expression of the corresponding kernel, derived by Gautschi and Li, we
determine the locations on the ellipses where maximum modulus of the kernel

is attained.

1. Gauss–Radau quadrature rule with double end point

In this section, we analyze the remainder term for Gauss–Radau quadrature
rule with the end point −1 of multiplicity r

(1.1)

∫ 1

−1

f(t)ω(t) dt =

r−1∑
ρ=0

κρ
Rf (ρ)(−1) +

n∑
ν=1

λν
Rf(τν

R) +RRn,r(f),

where τRν are zeros of πn(·;ωR), orthogonal polynomial on [−1, 1], with respect to
the weight function

ωR(t) = (t+ 1)rω(t).

Here, RRn,r(f) = 0 for all f ∈ P2n+2r−1 (polynomials of degree 6 2n+ 2r − 1).
Let Γ be a simple closed curve in the complex plane surrounding the interval [−1, 1]
and let D = int Γ be its interior. If the integrand f is analytic in a domain D
containing [−1, 1], then the remainder term RRn,r(f) admits the contour integral
representation

(1.2) RRn,r(f) =
1

2πi

∮
Γ

KR
n,r(z;ω)f(z)dz.
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The kernel is given by

KR
n,r(z;ω) ≡ Kn,r(z, ω) =

%Rn,r(z;ω)

(z + 1)rπn(z;ωR)
, z /∈ [−1, 1],

where we denote wn,r(z;ω) = (z + 1)rπn(z;ωR). Also,

%Rn,r(z;ω) ≡ %n,r(z, ω) =

∫ 1

−1

wn,r(z;ω)

z − t
ω(t)dt.

The integral representation (1.2) leads to the error bound

|RRn,r(f)| 6 `(Γ)

2π

(
max
z∈Γ
|Kn,r(z;ω)|

)(
max
z∈Γ
|f(z)|

)
,

where `(Γ) is the length of the contour Γ. In this paper we take Γ = Eρ, where the
ellipse Eρ is given by

(1.3) Eρ =
{
z ∈ C | z = 1

2 (u+ u−1), 0 6 θ 6 2π
}
, u = ρ eiθ.

The upper bound on |RRn,r(f)| reduces to

|RRn,r(f)| 6 `(Eρ)
2π

(
max
z∈Eρ
|Kn,r(z;ω)|

)(
max
z∈Eρ
|f(z)|

)
.

Furthermore, we take r = 2, meaning we are dealing with double end point. The
goal is to determine the points where the kernel attains its maximum modulus along
the contour of integration. In [2] Gautschi and Li considered Gauss–Radau and
Gauss–Lobatto quadrature rules with multiple end points with respect to the four
Chebyshev weight functions and derived explicit expressions of the corresponding
kernels Kn,r(z;ωj) in terms of the variable u = ρeiθ.

1.1. Maximum modulus of the kernel. Gautschi and Li [2, Section 3.3]
analyzed the maximum modulus of the kernel Kn,2(z;ω2). Based on numerical
calculations, they made the conjectures that the maximum is attended on the
negative real axis if (i) ρ > 1 and 1 6 n 6 11, and (ii) ρ > ρn and n > 12.

Here, ρn are numbers determined for 12 6 n 6 20. We can merge the cases
from the previous conjectures. The maximum modulus of the kernel is attended
on the negative real axis if ρ > ρ∗ and n > 1, where ρ∗ = 1 if 1 6 n 6 11, while
ρ∗ = ρn if n > 12.

In this paper we prove the existence of the values ρ∗ from the previous conjec-
ture. We give the strong numerical evidence for the precise values of ρ∗ for n > 12.
Gautschi and Li [2, (2.7)] derived the explicit representation of the kernel

Kn,2(z;ω2) =
π(u2 − 1)

un+4

× u2 + αu+ β

β[un+3 − u−(n+3)] + α[un+2 − u−(n+2)] + [un+1 − u−(n+1)]
,

where α = 4(n+1)
2n+5 , β = (n+1)(2n+3)

(n+3)(2n+5) , z = (u + u−1)/2 and u = ρeiθ. We can

determine the modulus of the kernel on Eρ. We are also interested in the modulus
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of the kernel at θ = π. By introducing some substitutions, we can easily express
the modulus of the kernel in the form

|Kn,2(z;ω2)| =
( π2

ρ2n+8

ac

δ

)1/2

,

where

a = |u2 − 1|2 = ρ4 − 2ρ2 cos 2θ + 1,

c = |u2 + αu+ β|2 = ρ4 + 2α cos θρ3 + (α2 + 2β cos 2θ)ρ2 + 2αβ cos θρ+ β2,

δ =
∣∣β[un+3 − u−(n+3)] + α[un+2 − u−(n+2)] + [un+1 − u−(n+1)]

∣∣2 =
d

ρ2n+6
,

i.e.,

d = δ · ρ2n+6

= |β[un+3 − u−(n+3)] + α[un+2 − u−(n+2)] + [un+1 − u−(n+1)]|2 · ρ2n+6

= β2 · ρ4n+12 + 2αβ cos θ · ρ4n+11 + [α2 + 2β cos 2θ] · ρ4n+10

+ 2α cos θ · ρ4n+9 + ρ4n+8 − 2β cos(2n+ 4)θ · ρ2n+8

− [2α cos(2n+ 3)θ + 2αβ cos(2n+ 5)θ] · ρ2n+7

− [2 cos(2n+ 2)θ + 2β2 cos(2n+ 6)θ + 2α2 cos(2n+ 4)θ] · ρ2n+6

− [2αβ cos(2n+ 5)θ + 2α cos(2n+ 3)θ] · ρ2n+5 − 2β cos(2n+ 4)θ · ρ2n+4

+ ρ4 + 2α cos θ · ρ3 + [α2 + 2β cos 2θ] · ρ2 + 2αβ cos θ · ρ+ β2.

In order to express d(ρ) as a polynomial function in ρ, the term δ is multiplied by
ρ2n+6, which reduces the expression for the square of the modulus of the kernel to

|Kn,2(z;ω2)|2 =
π2

ρ2

ac

d
.

By letting A,C,D denote the values of a, c, d at the angle θ = π, the square of the
modulus of the kernel at θ = π can be expressed as

|Kn,2(z;ω3)|2 =
π2

ρ2

AC

D
.

The following substitutions are appropriate

A = ρ4 − 2ρ2 + 1,

C = ρ4 − 2α · ρ3 + (α2 + 2β) · ρ2 − 2αβ · ρ+ β2,

D = β2 · ρ4n+12 − 2αβ · ρ4n+11 + (α2 + 2β) · ρ4n+10

− 2α · ρ4n+9 + ρ4n+8 − 2β · ρ2n+8 + (2α+ 2αβ) · ρ2n+7

− (2 + 2β2 + 2α2) · ρ2n+6 + (2αβ + 2α) · ρ2n+5 − 2β · ρ2n+4

+ ρ4 − 2α · ρ3 + (α2 + 2β) · ρ2 − 2αβ · ρ+ β2.

According to Gautschi and Li’s conjecture, there exist some value ρ∗ such that
the maximum modulus of the kernel is attended at θ = π for all ρ > ρ∗ and n > 1.
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In the case of conjecture (i) ρ∗ = 1, while in the case of conjecture (ii) ρ∗ = ρn.
We formulate the following theorem which states the existence of the value ρ∗.
Whereas that conjectures hold for all ρ from the interval [ρ∗,∞), we separately
derive a detailed numerical study.

Theorem 1.1. For the Gauss–Radau quadrature formula with double end point
−1 (r = 2) with the Chebyshev weight function of the second kind, there exist a value
ρ∗ ∈ [1,∞), such that the modulus of the kernel |Kn,2(z;ω2)| attains its maximum
value on the negative real axis (θ = π) for ρ > ρ∗ and n > 1, i.e.,

max
z∈Eρ
|Kn,2(z;ω2)| =

∣∣Kn,2

(
− 1

2 (ρ+ ρ−1), ω2

)∣∣;
for ρ > ρ∗, n > 1.

Proof. i) Referring to the previously introduced notation, we have to show
that ac

d 6
AC
D for each ρ > ρ∗ and n > 1. The previous inequality can be written

as I(ρ) = [acD − ACd] 6 0. We can easily see that I(ρ) is a polynomial in ρ, of
degree equal to 4n+ 19, whose coefficients depend only on θ, i.e.,

I = I(ρ) =

4n+19∑
i=0

ai(θ)ρ
i.(1.4)

In order to show the existence of numbers ρ∗, we use the well known fact that,
starting from some value of ρ, the sign of polynomial I(ρ) = ρ4n+19(a4n+19 +
a4n+18

ρ + a4n+17

ρ2 + · · ·+ a0
ρ4n+19 ) coincides with the sign of leading coefficient a4n+19 =

2αβ(1 + cos θ)(β − 1), where α = 4 n+1
2n+5 and β = (n+1)(2n+3)

(n+3)(2n+5) . Therefore,

a4n+19 < 0 iff β < 1 iff (n+ 1)(2n+ 3) < (n+ 3)(2n+ 5).

The previous inequality reduces to n > −2. We conclude that the term a4n+19 is
negative for all n > 1, i.e., for all n > 1 there exist a number ρ∗ such that I(ρ) 6 0
for all ρ > ρ∗. �

1.2. Gautschi and Li’s conjecture. According to the conjecture, the max-
imum is attended at θ = π for all ρ > ρ∗ and n > 1. In order to ensure the
non-positivity of polynomial I(ρ) given by (1.4) for each ρ > ρ∗, we can write
the initial polynomiall in the terms of positive differences ρ − ρ∗, and show the
non-positivity of its new coefficients. We have

J(ρ) =

4n+19∑
i=0

bi(θ, ρ
∗)(ρ− ρ∗)i for all ρ > ρ∗.

Numerical calculations show that all functions bi(θ, ρ
∗), i = 0, 1, . . . , 4n + 19 are

strictly under the x-axis for all θ. In general, non-positivity of coefficients bi(θ, ρ
∗)

is not necessary condition for non-positivity of a polynomial for each ρ > ρ∗, but
in this case, it is obviously a sufficient condition.

Explicit formulae for bi(θ, ρ
∗) can be given in the terms of coefficients aj(θ) by

using the binomial formula, but in MatLab implementation it is more practical to
use a Horner scheme. The new coefficients b0(θ, ρ∗), b1(θ, ρ∗), . . . , b4n+19(θ, ρ∗) are
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complicated trigonometric functions, inappropriate for further analytical consider-
ation. The method has been tested for all values of n from 1 to 100 and it gives
the optimal results. Some of the cases are displayed in Fig. 1.
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Figure 1. The functions b0(θ, ρ∗), . . . , b31(θ, ρ∗), in the case n =
3, ρ∗ = 1 (left) and the functions b0(θ, ρ∗), . . . , b139(θ, ρ∗), in the
case n = 30, ρ∗ = 16.8838 (right).

1.3. The determination of ρ∗ in the case n > 12. Our aim is to determine
the minimal values of ρ∗ for n > 12 by using MatLab. For fixed n > 12, we treated
the terms J(ρ) and tested the smallest possible values of ρ∗ such that the terms
J(ρ) are non-positive for each ρ > ρ∗ (Table 1).

Table 1. The values of ρ∗ for 12 6 n 6 47

n ρ∗ n ρ∗ n ρ∗ n ρ∗

12 2.3455 21 10.5861 30 16.8838 39 23.0093
13 3.4034 22 11.3053 31 17.5691 40 23.6857
14 4.7165 23 12.0172 32 18.2529 41 24.3615
15 5.8433 24 12.7232 33 18.9354 42 25.0367
16 6.7473 25 13.4245 34 19.6167 43 25.7115
17 7.5731 26 14.1219 35 20.2969 44 26.3859
18 8.3575 27 14.8161 36 20.9762 45 27.0599
19 9.1162 28 15.5076 37 21.6547 46 27.7334
20 9.8575 29 16.1967 38 22.3323 47 28.4066

1.4. The error bounds. Let us consider numerical calculation of the integral
(1.1) with Chebyshev weight function ω = ω2

I(f) =

∫ 1

−1

f(t)
√

1− t2 dt.

According to the previously introduced notation, the error bound of the corre-
sponding quadrature formula is given by |Rn,2(f)| 6 rn(f), where

rn(f) = inf
ρn<ρ<ρmax

[
`(Eρ)
2π

(
max
z∈Eρ
|Kn,2(z)|

)(
max
z∈Eρ
|f(z)|

)]
.
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Here, `(Eρ) represents the length of the ellipse Eρ, and can be estimated by

`(Eρ) 6 2πa1

(
1− 1

4
a−2

1 −
1

64
a−4

1 −
5

256
a−6

1

)
,

where a1 = (ρ + ρ−1)/2 [13]. According to the conjecture, the kernel attains its

maximum value at θ = π, i.e., maxz∈Eρ |Kn,2(z)| = π
ρ

√
AC
D , where A,C,D denote

the values of the terms a, c, d for the fixed angle θ = π. The error bound rn(f)
reduces to

(1.5) rn(f) = inf
ρn<ρ<ρmax

[
a1
π

ρ

(
1− 1

4
a−2

1 −
1

64
a−4

1 −
5

256
a−6

1

)√AC

D

(
max
z∈Eρ
|f(z)|

)]
.

In order to check the proposed error bounds we made several tests and com-
pared them with respect to the exact errors (“Error”) calculatedby using a modified
Gautschi’s MatLab code gradau.m (cf. [4, 5]) to a high precision arithmetic.

Example 1.1. Let f1(z) = cos(z)
z2+ω2 , ω > 0. For function f1(z) (see [15]) it

holds that

max
z∈Eρ
|f1(z)| = cos(b1)

−b21 + ω2
,

where b1 = (ρ− ρ−1)/2, and the infimum is calculated with respect to the interval

ρ ∈ (ρn, ρmax), where ρmax = ω +
√

1 + ω2. The corresponding error bounds and
actual errors are displayed in Table 2.

Table 2. Error bounds rn(f1) and actual errors, where f1(z) = cos(z)
z2+ω2

n rn, ω = 2 Error rn, ω = 5 Error rn, ω = 20 Error

1 1.082(−1) 2.544(−2) 2.800(−3) 1.549(−3) 8.426(−5) 6.903(−5)
2 5.601(−3) 1.051(−3) 4.087(−5) 1.671(−5) 6.819(−7) 4.226(−7)
3 3.224(−4) 4.858(−5) 5.367(−7) 1.572(−7) 3.089(−9) 1.665(−9)
4 1.909(−5) 2.395(−6) 6.547(−9) 1.417(−9) 9.374(−12) 4.491(−12)
5 1.142(−6) 1.225(−7) 7.637(−11) 1.285(−11) 2.045(−14) 8.808(−15)
10 8.600(−13) 5.335(−14) 1.215(−20) 9.504(−22) 4.433(−29) 1.046(−29)
13 1.761(−16) 2.714(−17) 1.432(−26) 8.481(−28) 2.155(−38) 3.104(−39)

The values rn(f1), and ρopt ∈ (ρn, ρmax), for the same values n and ω from
Table 2, in which the expression in brackets under the sign of inf in (1.5) attains
its minimum are presented in Table 3.

Example 1.2. Let f2(z) = ee
cos(ωz)

, ω > 0. The function f2 is entire and it is
known (see [14]) that

max
z∈Eρ
|f2(z)| = ee

cosh(ωb1)

.

Table 4 displays some error bounds and actual errors.
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Table 3. Error bounds rn(f1) and values ρopt, where f1(z) = cos(z)
z2+ω2

n rn(f1), ω = 2 ρopt rn(f1), ω = 5 ρopt rn(f1), ω = 20 ρopt
1 1.082(−1) 3.3511 2.800(−3) 6.2311 8.426(−5) 8.2831
2 5.601(−3) 3.5666 4.087(−5) 7.4816 6.819(−7) 11.8126
3 3.224(−4) 3.7104 5.367(−7) 8.2394 3.089(−9) 15.4024
4 1.909(−5) 3.8087 6.547(−9) 8.6927 9.374(−12) 18.9057
5 1.142(−6) 3.8765 7.637(−11) 8.9795 2.045(−14) 22.2445
10 8.600(−13) 4.0397 1.215(−20) 9.5587 4.433(−29) 33.8827
13 1.761(−16) 4.0814 1.432(−26) 9.6884 2.155(−38) 36.4644

Table 4. Error bounds rn(f2) and actual errors, where f2(z) = ee
cos(wz)

n rn, ω = 1 Error rn, ω = 0.1 Error rn, ω = 0.01 Error

1 4.412(+1) 4.017(+0) 3.101(−3) 1.411(−3) 1.212(−5) 1.434(−7)
2 4.395(+0) 5.425(−1) 5.982(−6) 2.023(−6) 3.671(−9) 2.057(−12)
3 5.140(−1) 6.971(−2) 1.097(−8) 3.043(−9) 1.061(−16) 1.892(−15)
4 6.280(−2) 8.698(−2) 1.877(−11) 4.490(−12) 1.838(−21) 4.580(−22)
5 7.701(−3) 1.050(−3) 3.012(−14) 9.457(−15) 2.977(−26) 6.546(−27)
6 9.212(−4) 1.227(−4) 4.569(−17) 8.812(−18) 4.548(−31) 9.015(−32)
9 1.365(−6) 1.635(−7) 1.213(−25) 1.867(−26) 1.224(−45) 1.920(−46)
12 1.613(−9) 1.738(−10) 2.350(−34) 3.067(−35) 2.394(−60) 3.168(−61)

2. Gauss–Radau quadrature rule with single end point

In this section we analyze the remainder term of Gauss–Radau quadrature rule
with the end point −1∫ 1

−1

f(t)ω(t) dt = λR0 f(−1) +

n∑
ν=1

λν
Rf(τν

R) +RRn+1(f),

where τRν are zeros of πn(·;ωR), the orthogonal polynomial on [−1, 1] with respect
to the Chebyshev weight functions ω2(t). The remainder term RRn+1(f) admits the
contour integral representation

RRn+1,r(f) =
1

2πi

∮
Γ

KR
n+1,r(z;ω)f(z)dz.

The kernel is given by

KR
n+1(z;ω) ≡ Kn+1(z, ω) =

1

wn+1(z;ω)

∫ 1

−1

ω(t)wn+1(z;ω)

z − t
dt, z /∈ [−1, 1],

where wn+1(z;ω) =
∏n+1
i=1 (z − τi). We take Γ = Eρ, where the ellipse Eρ is given

by (1.3).
In [3] Gautschi considered Gauss–Radau and Gauss–Lobatto quadrature rules

with respect to the Chebyshev weight function ω2 and presented the conjectures
based on numerical considerations. The case ρ > ρn from Gautschi’s conjecture has
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already been proven [10]. Here, we consider the case ρ < ρn from Gautschi’s con-
jecture, which supplements earlier work in [10]. We also give the strong numerical
evidence for the precise values of ρn.

2.1. Maximum modulus of the kernel. Gautschi analyzed the maximum
modulus of the kernel Kn+1(z;ω2) and made the conjecture [3, p. 224] that the
maximum is attended at θ = π if 1 < ρ < ρn and n > 4 where ρn is determined for
4 6 n 6 10.

The kernel Kn+1(z;ω2) is given by

Kn+1(z;ω2) =
π

un+1
× 1− u−2 + α(u+ u−1)

un+2 − u−(n+2) + α[un+1 − u−(n+1)]
,

where α = n+2
n+1 , z = 1

2 (u+ u−1) and u = ρeiθ. By introducing some substitutions,
we can express the modulus of the kernel in the form

|Kn+1(z;ω2)| =
( π2

ρ2n+2

γ

δ

)1/2

,

where

γ = |1− u−2 + α(u+ u−1)|2 =
c

ρ4
,

c = γ · ρ4 = ρ6 · α2 + ρ5 · 2α cos θ + ρ4 · (1− 2α2 cos 2θ)

− ρ3 · 2α(cos θ + cos 3θ) + ρ2 · (α2 − 2 cos 2θ) + ρ · 2α cos θ + 1.

The terms γ and δ are multiplied by ρ4 and ρ2n+4 respectively

δ = |un+2 − u−(n+2) + α[un+1 − u−(n+1)]|2 =
d

ρ2n+4
,

d = δ · ρ2n+4 = ρ4n+8 + ρ4n+7 · 2α cos θ + ρ4n+6 · α2

− ρ2n+5 · 2α cos(2n+ 3)θ − 2ρ2n+4 · [cos(2n+ 4)θ + α2 cos(2n+ 2)θ]

− ρ2n+3 · 2α cos(2n+ 3)θ + ρ2 · α2 + ρ · 2α cos θ + 1.

We get |Kn+1(z;ω2)|2 = π2

ρ2
c
d . By letting C and D denote the values of c and d at

θ = π, the square of the modulus of the kernel at θ = π can be expressed as

|Kn+1(z;ω2)|2 =
π2

ρ2

C

D
,

with appropriate replacements

C = ρ6 · α2 − ρ5 · 2α+ ρ4 · (1− 2α2)

+ ρ3 · 4α+ ρ2 · (α2 − 2)− ρ · 2α+ 1,

D = ρ4n+8 − ρ4n+7 · 2α+ ρ4n+6 · α2 + ρ2n+5 · 2α
− 2ρ2n+4 · (1 + α2) + ρ2n+3 · 2α+ ρ2 · α2 − ρ · 2α+ 1.

Our task is to show that this is the maximum value of the modulus for all 1 < ρ < ρn
if n > 4.
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2.2. Gautschi’s conjecture. The conjecture suggests that the maximum
modulus of the kernel is attended on the negative real axis for all ρ from the
interval (1, ρn) if n > 4. Whereas that ρ belongs to the bounded interval, it is not
possible to conduct asymptotic analysis.

Referring to the previously introduced notation, we have to show c
d 6

C
D for

each 1 < ρ < ρn and n > 4. The previous inequality can be written as

I(ρ) = [cD − Cd] 6 0.

The term I(ρ) is polynomial in ρ whose coefficients depend only on θ

I(ρ) = [2α(1 + cos θ)(1− α2)] · ρ4n+13 + [2α2(1− cos 2θ)] · ρ4n+12

+ 2α[α2 + (3α2 − 2) cos θ + 2α2 cos 2θ − cos 3θ − 3] · ρ4n+11

+ 4 sin2 θ[1 + α4 − 4α2 cos θ] · ρ4n+10

− 2α[3α2 − 2 cos 2θ + cos θ(α2 + 2α2 cos 2θ − 3)− 1] · ρ4n+9

+ [4α2 sin2 θ] · ρ4n+8 + [2α(α2 − 1)(1 + cos θ)] · ρ4n+7 + . . .

i.e.,

I(ρ) =

4n+13∑
i=0

ai(θ)ρ
i, 1 < ρ < ρn.

Modeled on the consideration from the previous section, we can write the polyno-
mial I(ρ) as a polynomial in the terms of positive differences ρn − ρ, and show the
non-positivity of its new coefficients.

In order to ensure non-positivity for 1 < ρ < ρn, first of all, we shift the interval
ρ ∈ (1, ρn) iff −ρ ∈ (−ρn,−1) iff −ρ+ ρn ∈ (0, ρn− 1). The polynomial I(ρ) can
be written in the form

J(ρ) =

4n+13∑
k=0

βk(θ, ρn)(ρn − ρ)k.

Its non-positivity on the interval (0, ρn−1) is sufficient condition for non-positivity
of the initial polynomial I(ρ) on the interval (1, ρn). The βi(θ, ρn) coefficients can
be expressed by applying the transformation ρ 7→ (−1) · ρ+ ρn. Some of them are
presented

β4n+13(θ, ρn) = 2α(cos θ + 1)(1− α2),

β4n+12(θ, ρn) = −4α cos2 θ
2 [(α2 − 1)(13 + 4n)ρn + 2α cos θ − 2α],

β4n+11(θ, ρn) = 2α[α2 − 2 cos θ + 3α2 cos θ − 2α2 − (3 + n)(13 + 4n)(ρn)2

· (1 + cos θ) + 2α2 cos 2θ − cos 3θ + 8α(3 + n)ρn sin2 θ − 3],

β4n+10(θ, ρn) = − 4
3α(11 + 4n)ρn cos2 θ

2 [3(5 + α2) + 2(α2 − 1)(3 + n)

· (13 + 4n)(ρn)2 − 12(1 + α2) cos θ + 6 cos 2θ]

+ 4 sin2 θ[1 + α4 + 2α2(3 + n)(11 + 4n)(ρn)2 − 4α2 cos θ],

β4n+9(θ, ρn) = − 4
3α(5 + 2n)(11 + 4n)(ρn)2 cos2 θ

2 [15 + 3α2
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Figure 2. The functions β49(θ, ρn), β48(θ, ρn), β47(θ, ρn), β46(θ, ρn) in
the case n = 9, ρn = 1.0394

+ (α2 − 1)(3 + n)(13 + 4n)(ρn)2 − 12 cos θ(1 + α2) + 6 cos 2θ]

− 2α[3α2 − 2 cos 2θ + cos θ(α2 + 2α2 cos 2θ − 3)− 1] + 8
3ρn sin2 θ

· (5 + 2n)[3 + 3α4 + 2α2(3 + n)(11 + 4n)(ρn)2 − 12α2 cos θ].

Figure 2 presents the graphs of previous coefficients in the case n = 9, ρn = 1.0394.
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Figure 3. The functions β0(θ, ρn), . . . , β29(θ, ρn) in the case n = 4
(left) and the functions β0(θ, ρn), . . . β121(θ, ρn) in the case n = 27

(right)

Explicit formulae for the coefficients βi(θ, ρn) are complicated trigonometric
terms, inappropriate for further analytical consideration. Numerical calculations
show that all coefficients βi(θ, ρn), i 6 4n + 13 are strictly under the x-axis. We
tested the cases n = 4, 3, . . . , 45, and some of them are presented (Fig. 3). For fixed
n > 4, we treated the terms J(ρ) and tested the largest possible values of ρn such
that the terms J(ρ) are non-positive for each 1 < ρ < ρn (Table 5).
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Table 5. The values of ρn for 4 6 n 6 45

n ρn n ρn n ρn n ρn n ρn n ρn
4 1.2845 9 1.0394 14 1.0156 19 1.0084 24 1.0052 41 1.0017
5 1.1517 10 1.0314 15 1.0136 20 1.0075 25 1.0048 42 1.0017
6 1.0964 11 1.0257 16 1.0119 21 1.0068 26 1.0043 43 1.0016
7 1.0679 12 1.0215 17 1.0105 22 1.0062 · · · · · · 44 1.0015
8 1.0506 13 1.0182 18 1.0093 23 1.0057 40 1.0018 45 1.0014
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